QIAO Di, LEI Ning, ZHU Junjie, ZHANG Chaonan, WANG Yanchao, ZHOU Ling. Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2024, 20(4): 164-176. DOI: 10.12131/20240050
Citation: QIAO Di, LEI Ning, ZHU Junjie, ZHANG Chaonan, WANG Yanchao, ZHOU Ling. Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2024, 20(4): 164-176. DOI: 10.12131/20240050

Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)

More Information
  • Received Date: March 09, 2024
  • Revised Date: April 28, 2024
  • Accepted Date: May 14, 2024
  • Available Online: June 03, 2024
  • In order to investigate the disease resistance and metabolic regulatory network of Micropterus salmoides to M. salmoides rhabdovirus (MSRV), uncover the immunomolecular mechanism of its disease resistance, and provide genetic data references for subsequent molecular biology investigation of M. salmoides, we used the Illumina NovaSeq 6000 sequencing platform to analyze the transcriptome sequencing of liver tissues from susceptible group, disease-resistant group and control group of M. salmoides infected with MSRV. Functional annotation of obtained genes reveals that the annotated differentially expressed genes were mainly associated with functions such as cellular process, cell, binding and catalytic activity, etc. The KEGG pathway enrichment analysis indicates that the differentially expressed genes with high expression levels in M. salmoides liver tissue with MSRV infection were enriched in metabolic pathways, including drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, proteasome, ascorbate and aldarate metabolism, fatty acid degradation, as well as other metabolic processes. Further screening of immune-related genes for pathway analysis shows that the main pathways associated with the immune response against MSRV were NOD-like receptor signaling pathway, C-type lectireceptor signaling pathway, cytosolic DNA-sensing pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, etc. Finally, we verified the consistency of the differential gene trends with the results of transcriptome sequencing analysis by qRT-PCR, demonstrating the reliability of the transcriptome data. The differential genes and regulatory pathways identified in this study will provide a theoretical basis for research on the molecular mechanism of M. salmoides immunity against MSRV as well as disease prevention and control.

  • [1]
    李涵, 张桂芳. 加州鲈养殖产业现状与可持续发展建议[J]. 江西水产科技, 2024(1): 18-19, 33.
    [2]
    HUSSEIN G H G, CHEN M, QI P P, et al. Aquaculture industry development, annual price analysis and out-of-season spawning in largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2020, 519: 734901. doi: 10.1016/j.aquaculture.2019.734901
    [3]
    姚友锋, 邱军强, 王松刚. 加州鲈常见疾病的防治[J]. 科学养鱼, 2017(8): 92.
    [4]
    雷燕. 加州鲈鱼弹状病毒病流行特点及综合防控技术[J]. 当代水产, 2015, 40(5): 76.
    [5]
    KHIEOKHAJONKHET A, AEKSIRI N, KANEKO G. Molecular characterization and homology modeling of liver X receptor in Asian seabass, Lates calcarifer: predicted functions in reproduction and lipid metabolism[J]. Fish Physiol Biochem, 2019, 45(2): 523-538. doi: 10.1007/s10695-019-00617-6
    [6]
    KNOLLE P A, GERKEN G. Local control of the immune response in the liver[J]. Immunol Rev, 2000, 174: 21-34. doi: 10.1034/j.1600-0528.2002.017408.x
    [7]
    FREITAS-LOPES M A, MAFRA K, DAVID B A, et al. Differential location and distribution of hepatic immune cells[J]. Cells, 2017, 6(4): 48. doi: 10.3390/cells6040048
    [8]
    BUCHMANN K. Immune mechanisms in fish skin against monogeneans: a model[J]. Folia Parasit, 1999, 46(1): 1-9.
    [9]
    刘问. 嗜水气单胞菌感染青鱼肝脏的蛋白质组学分析[J]. 水生生物学报, 2019, 43(2): 330-339.
    [10]
    付静, 吕利群. 槲皮素拮抗草鱼呼肠孤病毒感染的药物学研究[J]. 中国水产科学, 2022, 29(11): 1659-1668.
    [11]
    胡虎子, 曾伟伟, 王英英, 等. 罗非鱼湖病毒病研究进展[J]. 病毒学报, 2020, 36(1): 145-154.
    [12]
    雷燕, 戚瑞荣, 崔龙波, 等. 大口黑鲈鱼种弹状病毒病的诊断[J]. 大连海洋大学学报, 2015, 30(3): 305-308.
    [13]
    段晓晨, 程起群. 鱼类转录组学研究概况[J]. 渔业信息与战略, 2021, 36(3): 179-185.
    [14]
    李岩. 植物乳杆菌 LP-S25 复合诱变筛选及其在大口黑鲈养殖中的应用效果研究[D]. 泰安: 山东农业大学, 2022: 41-44.
    [15]
    马世新. 纳米硒对大口黑鲈生长性能和肌肉品质的影响[D]. 钦州: 北部湾大学, 2022: 57-72.
    [16]
    ZOU J H, HU P, WANG M Y, et al. Liver injury and metabolic dysregulation in largemouth bass (Micropterus salmoides) after ammonia exposure[J]. Metabolites, 2023, 13(2): 274. doi: 10.3390/metabo13020274
    [17]
    MA D M, DENG G C, BAI J J, et al. A strain of Siniperca chuatsi rhabdovirus causes high mortality among cultured largemouth bass in South China[J]. J Aquat Anim Health, 2013, 25(3): 197-204. doi: 10.1080/08997659.2013.799613
    [18]
    KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317
    [19]
    PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3): 290-295. doi: 10.1038/nbt.3122
    [20]
    LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [21]
    WANG Q D, LI Z J, GUI J F, et al. Paradigm changes in freshwater aquaculture practices in China: moving towards achieving environmental integrity and sustainability[J]. Ambio, 2018, 47(4): 410-426.
    [22]
    NAYLOR R L, HARDY R W, BUSCHMANN A H, et al. A 20-year retrospective review of global aquaculture[J]. Nature, 2021, 591(7851): 551-563. doi: 10.1038/s41586-021-03308-6
    [23]
    GAO E B, CHEN G F. Micropterus salmoides rhabdovirus (MSRV) infection induced apoptosis and activated interferon signaling pathway in largemouth bass skin cells[J]. Fish Shellfish Immunol, 2018, 76: 161-166. doi: 10.1016/j.fsi.2018.03.008
    [24]
    FEI H, YI S F, ZHANG H M, et al. Transcriptome and 16S rRNA analysis revealed the response of largemouth bass (Micropterus salmoides) to Rhabdovirus infection[J]. Front Immunol, 2022, 13: 973422. doi: 10.3389/fimmu.2022.973422
    [25]
    王莹莹. 基于转录组学合蛋白质组学的翘嘴鳜发病与抗病机制分析及TRIM21功能研究[D]. 苏州: 苏州大学, 2021: 22.
    [26]
    NELSON D R. Cytochrome P450 diversity in the tree of life[J]. Biochim Biophys Acta Proteins Proteom, 2018, 1866(1): 141-154. doi: 10.1016/j.bbapap.2017.05.003
    [27]
    GILLAM E M J. Extending the capabilities of nature's most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s[J]. Arch Biochem Biophys, 2007, 464(2): 176-186. doi: 10.1016/j.abb.2007.04.033
    [28]
    STEGEMAN J J. Cytochrome P450 forms in fish: catalytic, immunological and sequence similarities[J]. Xenobiotica, 1989, 19(10): 1093-1110. doi: 10.3109/00498258909043164
    [29]
    UNO T, ISHIZUKA M, ITAKURA T. Cytochrome P450 (CYP) in fish[J]. Environ Toxicol Pharmacol, 2012, 34(1): 1-13. doi: 10.1016/j.etap.2012.02.004
    [30]
    鞠蓉. 中华绒螯蟹抗维氏气单胞菌免疫防御机制和相关差异表达基因研究[D]. 泰安: 山东农业大学, 2022: 34.
    [31]
    李玲. 镉在凡纳滨对虾体内的富集、清除及其毒性作用研究[D]. 湛江: 广东海洋大学, 2021: 29.
    [32]
    ZHANG J R, YAO J, WANG R J, et al. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq data sets[J]. Biochim Biophys Acta, 2014, 1840(9): 2813-2828. doi: 10.1016/j.bbagen.2014.04.016
    [33]
    LIANG H, SONG K. Elucidating ascorbate and aldarate metabolism pathway characteristics via integration of untargeted metabolomics and transcriptomics of the kidney of high-fat diet-fed obese mice[J]. PLoS One, 2024, 19(4): e300705.
    [34]
    CHING B, CHEW S F, IP Y K. Ascorbate synthesis in fishes: a review[J]. IUBMB Life, 2015, 67(2): 69-76. doi: 10.1002/iub.1360
    [35]
    ZHOU X, ZHU X X, ZENG H. Fatty acid metabolism in adaptive immunity[J]. FEBS J, 2023, 290(3): 584-599. doi: 10.1111/febs.16296
    [36]
    PENG L, CHEN L, WAN J J, et al. Single-cell transcriptomic landscape of immunometabolism reveals intervention candidates of ascorbate and aldarate metabolism, fatty-acid degradation and PUFA metabolism of T-cell subsets in healthy controls, psoriasis and psoriatic arthritis[J]. Front Immunol, 2023, 14: 1179877. doi: 10.3389/fimmu.2023.1179877
    [37]
    李兴洋, 乔璐, 杨臻, 等. 鲤在阿维菌素胁迫下肝胰腺组织的转录组分析[J]. 水产学杂志, 2024, 37(2): 26-32.
    [38]
    吴迪. 鰤鱼诺卡氏菌分离、培养及感染对小黄鱼免疫应答初步研究[D]. 舟山: 浙江海洋大学, 2023: 50-51.
    [39]
    LI L T, HU K, HONG B H, et al. The inhibitory effect of Bacillus amyloliquefaciens L1 on Aeromonas hydrophila and its mechanism[J]. Aquaculture, 2021, 539: 736590. doi: 10.1016/j.aquaculture.2021.736590
    [40]
    WU X M, HU Y W, XUE N N, et al. Role of zebrafish NLRC5 in antiviral response and transcriptional regulation of MHC related genes[J]. Dev Comp Immunol, 2017, 68: 58-68. doi: 10.1016/j.dci.2016.11.018
    [41]
    LI Y J, LI Y L, CAO X C, et al. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways[J]. Cell Mol Immunol, 2017, 14(1): 80-89. doi: 10.1038/cmi.2016.50
    [42]
    GABOR K A, CHARETTE J R, PIETRASZEWSKI M J, et al. A DN-mda5 transgenic zebrafish model demonstrates that Mda5 plays an important role in snakehead rhabdovirus resistance[J]. Dev Comp Immunol, 2015, 51(2): 298-304. doi: 10.1016/j.dci.2015.01.006
    [43]
    CHUPHAL B, RAI U, ROY B. Teleost NOD-like receptors and their downstream signaling pathways: a brief review[J]. Fish Shellfish Immunol Rep, 2022, 3: 100056. doi: 10.1016/j.fsirep.2022.100056
    [44]
    庞纪彩. 尼罗罗非鱼Toll样受体信号通路基因表达研究[D]. 上海: 上海海洋大学, 2016: 6-7.
    [45]
    童正飞, 胡亚洲, 谭进, 等. 中华鳖脾脏转录组比较及免疫相关基因分析[J]. 基因组学与应用生物学, 2020, 39(12): 5449-5456.
    [46]
    WU X M, CAO L, HU Y W, et al. Transcriptomic characterization of adult zebrafish infected with Streptococcus agalactiae[J]. Fish Shellfish Immunol, 2019, 94: 355-372. doi: 10.1016/j.fsi.2019.09.040
    [47]
    YANG Y B, ZHU X, ZHANG H X, et al. Dual RNA-Seq of trunk kidneys extracted from channel catfish infected with Yersinia rucke ri reveals novel insights into host-pathogen interactions[J]. Front Immunol, 2021, 12: 775708. doi: 10.3389/fimmu.2021.775708
    [48]
    WILKINS C, GALE M Jr. Recognition of viruses by cytoplasmic sensors[J]. Curr Opin Immunol, 2010, 22(1): 41-47. doi: 10.1016/j.coi.2009.12.003
    [49]
    丁云磊, 孙英杰, 王晓旭, 等. RIG-I样受体信号通路及其调控研究进展[J]. 中国动物传染病学报, 2014, 22(5): 72-79.
    [50]
    ZELENSKY A N, GREADY J E. The C-type lectin-like domain superfamily[J]. FEBS J, 2005, 272(24): 6179-6217. doi: 10.1111/j.1742-4658.2005.05031.x
    [51]
    王莉, 张杰, 赵贤亮, 等. 鱼类C-型凝集素结构特征及其免疫功能[J]. 水产科学, 2019, 38(2): 282-288.
    [52]
    MURTHY A M V, ROBINSON N, KUMAR S. Crosstalk between cGAS-STING signaling and cell death[J]. Cell Death Differ, 2020, 27(11): 2989-3003. doi: 10.1038/s41418-020-00624-8
    [53]
    张明洋, 曾茂芹, 刘妍罕, 等. 类志贺邻单胞菌感染杂交鲟肠道组织转录组分析[J]. 中国畜牧兽医, 2020, 47(9): 2732-2740.
    [54]
    吴莹. 卵形鲳鲹干扰素调节因子IRF1、IRF3和IRF7在抗菌免疫中的功能及机制研究[D]. 海口: 海南大学, 2021: 2-7, 113.
  • Related Articles

    [1]ZHONG Zhanyou, DENG Hong, KOU Chunni, CHEN Weitao, WU Zhi, LI Yuefei, XIA Yuguo, LI Huifeng, LI Jie, ZHU Shuli. Research on fish diversity in Xijiang Rare Fish Provincial Nature Reserve based on environmental DNA technology[J]. South China Fisheries Science, 2025, 21(2): 47-58. DOI: 10.12131/20240173
    [2]CHEN Weitao, DUAN Xinbin, GAO Lei, LI Xinhui, YANG Jiping, WANG Dengqiang. Genetic structure analysis of Ochetobius elongatus between Yangtze River and Pearl River using multiple loci[J]. South China Fisheries Science, 2022, 18(6): 19-25. DOI: 10.12131/20220007
    [3]WANG Teng, LIU Yong, QUAN Qiumei, LIN Lin, XIAO Yayuan, LI Chunhou, LI Hong. Community structure characteristics of zooplankton in main freshwater rivers of Jiangmen City, Guangdong Province[J]. South China Fisheries Science, 2021, 17(4): 9-17. DOI: 10.12131/20210019
    [4]XIA Yuguo, LI Yuefei, ZHU Shuli, LI Jie, LI Xinhui. Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of  temperature on CPUE in Pearl River basin[J]. South China Fisheries Science, 2021, 17(1): 10-16. DOI: 10.12131/20200131
    [5]ZHU Shuli, LI Yuefei, WU Zhi, LI Jie, XIA Yuguo, YANG Jiping, LI Xinhui. Research on catchable size and resource protection of Squaliobarbus curriculus in Xijiang River Fengkai section based on length-frequency data[J]. South China Fisheries Science, 2020, 16(4): 1-7. DOI: 10.12131/20190231
    [6]ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene[J]. South China Fisheries Science, 2019, 15(5): 84-91. DOI: 10.12131/20190042
    [7]KUANG Tianxu, SHUAI Fangmin, CHEN Weitao, LI Xinhui. Genetic diversity and population structure of Carassius auratus in Xijiang River[J]. South China Fisheries Science, 2018, 14(5): 29-35. DOI: 10.3969/j.issn.2095-0780.2018.05.004
    [8]YANG Xishu, ZHANG Qun, YÜ Fanyang, LV Jinlei, DI Xiaodan, SHAO Junwei, HUANG Zhenyu, LU Lifeng. MtDNA ND2 sequence-based genetic analysis of Anabas testudineus from South China and Lancang/Mekong River[J]. South China Fisheries Science, 2017, 13(3): 43-50. DOI: 10.3969/j.issn.2095-0780.2017.03.006
    [9]WU Zhi, TAN Xichang, LI Xinhui, TANG Yong. Acoustic monitoring on fish resources in Xijiang section of Pearl River during first closed fishing season[J]. South China Fisheries Science, 2014, 10(3): 24-28. DOI: 10.3969/j.issn.2095-0780.2014.03.004
    [10]ZHU Shuli, LI Xinhui, LI Yuefei, WANG Chao, YANG Jiping, LI Lin. Age and growth of Spualiobarbus curriculus from Zhaoqing Guangdong Section of Xijiang River[J]. South China Fisheries Science, 2013, 9(2): 27-31. DOI: 10.3969/j.issn.2095-0780.2013.02.005
  • Cited by

    Periodical cited type(9)

    1. 邓洪,钟占友,寇春妮,朱书礼,李跃飞,夏雨果,武智,李捷,陈蔚涛. 基于线粒体全基因组揭示斑鳠的种群遗传结构与演化历史. 生物多样性. 2025(01): 97-106 .
    2. 詹华伟,叶树政,陈锭娴,王凯丰,刘兰苑,龚剑,韩崇,李强. 基于线粒体Cytb序列的广东地区大刺鳅群体遗传多样性分析. 湖南农业科学. 2024(03): 1-6 .
    3. 刘童,王英俊,吴莹莹,邹琰,吕芳,吴海一,李建民,宋爱环. 魁蚶3个群体及杂交子代遗传多样性分析. 水产科学. 2024(04): 561-570 .
    4. 邓树庆,蔡杏伟,王韩,符成慧,张清凤,申志新,李高俊,李芳远. 保亭近腹吸鳅遗传多样性及保护建议. 热带生物学报. 2024(04): 419-426 .
    5. 王吉祥,刘凯,王永杰,刘彦斌,刘嘉成,王彩雯,肖伟,连总强,王玉涛. 黄河宁夏段黄河鮈群体的遗传多样性与系统发育分析. 基因组学与应用生物学. 2024(07): 1248-1259 .
    6. 卞玉玲,刘士力,刘一诺,贾永义,李飞,迟美丽,郑建波,程顺,顾志敏. 湖州河川沙塘鳢群体线粒体DNA cyt b基因序列的遗传多样性分析. 水产学杂志. 2023(01): 22-28+35 .
    7. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体nad1基因的大理州亚洲带绦虫遗传多样性分析. 热带医学杂志. 2023(03): 301-304 .
    8. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体12S rRNA基因对大理州亚洲带绦虫遗传多样性的分析. 中国人兽共患病学报. 2023(08): 784-788 .
    9. 范嗣刚,黄皓,王鹏飞,闫路路,赵超,张博,邱丽华. 基于cox1序列的中国6个花鲈野生群体遗传多样性. 广东海洋大学学报. 2022(03): 11-17 .

    Other cited types(6)

Catalog

    Article views (255) PDF downloads (87) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return