QIAO Di, LEI Ning, ZHU Junjie, ZHANG Chaonan, WANG Yanchao, ZHOU Ling. Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2024, 20(4): 164-176. DOI: 10.12131/20240050
Citation: QIAO Di, LEI Ning, ZHU Junjie, ZHANG Chaonan, WANG Yanchao, ZHOU Ling. Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2024, 20(4): 164-176. DOI: 10.12131/20240050

Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)

More Information
  • Received Date: March 09, 2024
  • Revised Date: April 28, 2024
  • Accepted Date: May 14, 2024
  • Available Online: June 03, 2024
  • In order to investigate the disease resistance and metabolic regulatory network of Micropterus salmoides to M. salmoides rhabdovirus (MSRV), uncover the immunomolecular mechanism of its disease resistance, and provide genetic data references for subsequent molecular biology investigation of M. salmoides, we used the Illumina NovaSeq 6000 sequencing platform to analyze the transcriptome sequencing of liver tissues from susceptible group, disease-resistant group and control group of M. salmoides infected with MSRV. Functional annotation of obtained genes reveals that the annotated differentially expressed genes were mainly associated with functions such as cellular process, cell, binding and catalytic activity, etc. The KEGG pathway enrichment analysis indicates that the differentially expressed genes with high expression levels in M. salmoides liver tissue with MSRV infection were enriched in metabolic pathways, including drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, proteasome, ascorbate and aldarate metabolism, fatty acid degradation, as well as other metabolic processes. Further screening of immune-related genes for pathway analysis shows that the main pathways associated with the immune response against MSRV were NOD-like receptor signaling pathway, C-type lectireceptor signaling pathway, cytosolic DNA-sensing pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, etc. Finally, we verified the consistency of the differential gene trends with the results of transcriptome sequencing analysis by qRT-PCR, demonstrating the reliability of the transcriptome data. The differential genes and regulatory pathways identified in this study will provide a theoretical basis for research on the molecular mechanism of M. salmoides immunity against MSRV as well as disease prevention and control.

  • [1]
    李涵, 张桂芳. 加州鲈养殖产业现状与可持续发展建议[J]. 江西水产科技, 2024(1): 18-19, 33.
    [2]
    HUSSEIN G H G, CHEN M, QI P P, et al. Aquaculture industry development, annual price analysis and out-of-season spawning in largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2020, 519: 734901. doi: 10.1016/j.aquaculture.2019.734901
    [3]
    姚友锋, 邱军强, 王松刚. 加州鲈常见疾病的防治[J]. 科学养鱼, 2017(8): 92.
    [4]
    雷燕. 加州鲈鱼弹状病毒病流行特点及综合防控技术[J]. 当代水产, 2015, 40(5): 76.
    [5]
    KHIEOKHAJONKHET A, AEKSIRI N, KANEKO G. Molecular characterization and homology modeling of liver X receptor in Asian seabass, Lates calcarifer: predicted functions in reproduction and lipid metabolism[J]. Fish Physiol Biochem, 2019, 45(2): 523-538. doi: 10.1007/s10695-019-00617-6
    [6]
    KNOLLE P A, GERKEN G. Local control of the immune response in the liver[J]. Immunol Rev, 2000, 174: 21-34. doi: 10.1034/j.1600-0528.2002.017408.x
    [7]
    FREITAS-LOPES M A, MAFRA K, DAVID B A, et al. Differential location and distribution of hepatic immune cells[J]. Cells, 2017, 6(4): 48. doi: 10.3390/cells6040048
    [8]
    BUCHMANN K. Immune mechanisms in fish skin against monogeneans: a model[J]. Folia Parasit, 1999, 46(1): 1-9.
    [9]
    刘问. 嗜水气单胞菌感染青鱼肝脏的蛋白质组学分析[J]. 水生生物学报, 2019, 43(2): 330-339.
    [10]
    付静, 吕利群. 槲皮素拮抗草鱼呼肠孤病毒感染的药物学研究[J]. 中国水产科学, 2022, 29(11): 1659-1668.
    [11]
    胡虎子, 曾伟伟, 王英英, 等. 罗非鱼湖病毒病研究进展[J]. 病毒学报, 2020, 36(1): 145-154.
    [12]
    雷燕, 戚瑞荣, 崔龙波, 等. 大口黑鲈鱼种弹状病毒病的诊断[J]. 大连海洋大学学报, 2015, 30(3): 305-308.
    [13]
    段晓晨, 程起群. 鱼类转录组学研究概况[J]. 渔业信息与战略, 2021, 36(3): 179-185.
    [14]
    李岩. 植物乳杆菌 LP-S25 复合诱变筛选及其在大口黑鲈养殖中的应用效果研究[D]. 泰安: 山东农业大学, 2022: 41-44.
    [15]
    马世新. 纳米硒对大口黑鲈生长性能和肌肉品质的影响[D]. 钦州: 北部湾大学, 2022: 57-72.
    [16]
    ZOU J H, HU P, WANG M Y, et al. Liver injury and metabolic dysregulation in largemouth bass (Micropterus salmoides) after ammonia exposure[J]. Metabolites, 2023, 13(2): 274. doi: 10.3390/metabo13020274
    [17]
    MA D M, DENG G C, BAI J J, et al. A strain of Siniperca chuatsi rhabdovirus causes high mortality among cultured largemouth bass in South China[J]. J Aquat Anim Health, 2013, 25(3): 197-204. doi: 10.1080/08997659.2013.799613
    [18]
    KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317
    [19]
    PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3): 290-295. doi: 10.1038/nbt.3122
    [20]
    LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [21]
    WANG Q D, LI Z J, GUI J F, et al. Paradigm changes in freshwater aquaculture practices in China: moving towards achieving environmental integrity and sustainability[J]. Ambio, 2018, 47(4): 410-426.
    [22]
    NAYLOR R L, HARDY R W, BUSCHMANN A H, et al. A 20-year retrospective review of global aquaculture[J]. Nature, 2021, 591(7851): 551-563. doi: 10.1038/s41586-021-03308-6
    [23]
    GAO E B, CHEN G F. Micropterus salmoides rhabdovirus (MSRV) infection induced apoptosis and activated interferon signaling pathway in largemouth bass skin cells[J]. Fish Shellfish Immunol, 2018, 76: 161-166. doi: 10.1016/j.fsi.2018.03.008
    [24]
    FEI H, YI S F, ZHANG H M, et al. Transcriptome and 16S rRNA analysis revealed the response of largemouth bass (Micropterus salmoides) to Rhabdovirus infection[J]. Front Immunol, 2022, 13: 973422. doi: 10.3389/fimmu.2022.973422
    [25]
    王莹莹. 基于转录组学合蛋白质组学的翘嘴鳜发病与抗病机制分析及TRIM21功能研究[D]. 苏州: 苏州大学, 2021: 22.
    [26]
    NELSON D R. Cytochrome P450 diversity in the tree of life[J]. Biochim Biophys Acta Proteins Proteom, 2018, 1866(1): 141-154. doi: 10.1016/j.bbapap.2017.05.003
    [27]
    GILLAM E M J. Extending the capabilities of nature's most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s[J]. Arch Biochem Biophys, 2007, 464(2): 176-186. doi: 10.1016/j.abb.2007.04.033
    [28]
    STEGEMAN J J. Cytochrome P450 forms in fish: catalytic, immunological and sequence similarities[J]. Xenobiotica, 1989, 19(10): 1093-1110. doi: 10.3109/00498258909043164
    [29]
    UNO T, ISHIZUKA M, ITAKURA T. Cytochrome P450 (CYP) in fish[J]. Environ Toxicol Pharmacol, 2012, 34(1): 1-13. doi: 10.1016/j.etap.2012.02.004
    [30]
    鞠蓉. 中华绒螯蟹抗维氏气单胞菌免疫防御机制和相关差异表达基因研究[D]. 泰安: 山东农业大学, 2022: 34.
    [31]
    李玲. 镉在凡纳滨对虾体内的富集、清除及其毒性作用研究[D]. 湛江: 广东海洋大学, 2021: 29.
    [32]
    ZHANG J R, YAO J, WANG R J, et al. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq data sets[J]. Biochim Biophys Acta, 2014, 1840(9): 2813-2828. doi: 10.1016/j.bbagen.2014.04.016
    [33]
    LIANG H, SONG K. Elucidating ascorbate and aldarate metabolism pathway characteristics via integration of untargeted metabolomics and transcriptomics of the kidney of high-fat diet-fed obese mice[J]. PLoS One, 2024, 19(4): e300705.
    [34]
    CHING B, CHEW S F, IP Y K. Ascorbate synthesis in fishes: a review[J]. IUBMB Life, 2015, 67(2): 69-76. doi: 10.1002/iub.1360
    [35]
    ZHOU X, ZHU X X, ZENG H. Fatty acid metabolism in adaptive immunity[J]. FEBS J, 2023, 290(3): 584-599. doi: 10.1111/febs.16296
    [36]
    PENG L, CHEN L, WAN J J, et al. Single-cell transcriptomic landscape of immunometabolism reveals intervention candidates of ascorbate and aldarate metabolism, fatty-acid degradation and PUFA metabolism of T-cell subsets in healthy controls, psoriasis and psoriatic arthritis[J]. Front Immunol, 2023, 14: 1179877. doi: 10.3389/fimmu.2023.1179877
    [37]
    李兴洋, 乔璐, 杨臻, 等. 鲤在阿维菌素胁迫下肝胰腺组织的转录组分析[J]. 水产学杂志, 2024, 37(2): 26-32.
    [38]
    吴迪. 鰤鱼诺卡氏菌分离、培养及感染对小黄鱼免疫应答初步研究[D]. 舟山: 浙江海洋大学, 2023: 50-51.
    [39]
    LI L T, HU K, HONG B H, et al. The inhibitory effect of Bacillus amyloliquefaciens L1 on Aeromonas hydrophila and its mechanism[J]. Aquaculture, 2021, 539: 736590. doi: 10.1016/j.aquaculture.2021.736590
    [40]
    WU X M, HU Y W, XUE N N, et al. Role of zebrafish NLRC5 in antiviral response and transcriptional regulation of MHC related genes[J]. Dev Comp Immunol, 2017, 68: 58-68. doi: 10.1016/j.dci.2016.11.018
    [41]
    LI Y J, LI Y L, CAO X C, et al. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways[J]. Cell Mol Immunol, 2017, 14(1): 80-89. doi: 10.1038/cmi.2016.50
    [42]
    GABOR K A, CHARETTE J R, PIETRASZEWSKI M J, et al. A DN-mda5 transgenic zebrafish model demonstrates that Mda5 plays an important role in snakehead rhabdovirus resistance[J]. Dev Comp Immunol, 2015, 51(2): 298-304. doi: 10.1016/j.dci.2015.01.006
    [43]
    CHUPHAL B, RAI U, ROY B. Teleost NOD-like receptors and their downstream signaling pathways: a brief review[J]. Fish Shellfish Immunol Rep, 2022, 3: 100056. doi: 10.1016/j.fsirep.2022.100056
    [44]
    庞纪彩. 尼罗罗非鱼Toll样受体信号通路基因表达研究[D]. 上海: 上海海洋大学, 2016: 6-7.
    [45]
    童正飞, 胡亚洲, 谭进, 等. 中华鳖脾脏转录组比较及免疫相关基因分析[J]. 基因组学与应用生物学, 2020, 39(12): 5449-5456.
    [46]
    WU X M, CAO L, HU Y W, et al. Transcriptomic characterization of adult zebrafish infected with Streptococcus agalactiae[J]. Fish Shellfish Immunol, 2019, 94: 355-372. doi: 10.1016/j.fsi.2019.09.040
    [47]
    YANG Y B, ZHU X, ZHANG H X, et al. Dual RNA-Seq of trunk kidneys extracted from channel catfish infected with Yersinia rucke ri reveals novel insights into host-pathogen interactions[J]. Front Immunol, 2021, 12: 775708. doi: 10.3389/fimmu.2021.775708
    [48]
    WILKINS C, GALE M Jr. Recognition of viruses by cytoplasmic sensors[J]. Curr Opin Immunol, 2010, 22(1): 41-47. doi: 10.1016/j.coi.2009.12.003
    [49]
    丁云磊, 孙英杰, 王晓旭, 等. RIG-I样受体信号通路及其调控研究进展[J]. 中国动物传染病学报, 2014, 22(5): 72-79.
    [50]
    ZELENSKY A N, GREADY J E. The C-type lectin-like domain superfamily[J]. FEBS J, 2005, 272(24): 6179-6217. doi: 10.1111/j.1742-4658.2005.05031.x
    [51]
    王莉, 张杰, 赵贤亮, 等. 鱼类C-型凝集素结构特征及其免疫功能[J]. 水产科学, 2019, 38(2): 282-288.
    [52]
    MURTHY A M V, ROBINSON N, KUMAR S. Crosstalk between cGAS-STING signaling and cell death[J]. Cell Death Differ, 2020, 27(11): 2989-3003. doi: 10.1038/s41418-020-00624-8
    [53]
    张明洋, 曾茂芹, 刘妍罕, 等. 类志贺邻单胞菌感染杂交鲟肠道组织转录组分析[J]. 中国畜牧兽医, 2020, 47(9): 2732-2740.
    [54]
    吴莹. 卵形鲳鲹干扰素调节因子IRF1、IRF3和IRF7在抗菌免疫中的功能及机制研究[D]. 海口: 海南大学, 2021: 2-7, 113.
  • Related Articles

    [1]HAO Tian, TANG Xianhu, JIANG Shouwen, WU Zhichao, XU Qianghua. Transcriptome comparative analysis of liver tissues of three plateau Schizothoracinae fish species[J]. South China Fisheries Science, 2024, 20(3): 92-100. DOI: 10.12131/20230204
    [2]WU Xiaopeng, HUANG Minwei, CHEN Xiaoying, PENG Kai, ZHAO Jichen, ZHONG Ping, LIU Fengkun, ZHANG Yehui, HUANG Wen. Transcriptome analysis of metamorphosis stage of Holothuria leucospilota[J]. South China Fisheries Science, 2023, 19(6): 84-96. DOI: 10.12131/20230105
    [3]LIU Fan, LIU Xinxin, SONG Caixia, LI Xilei, ZHANG Jun, SU Shiping. Prokaryotic expression and polyclonal antibody preparation of Nesfatin-1 protein in Micropterus salmoides[J]. South China Fisheries Science, 2023, 19(4): 98-104. DOI: 10.12131/20230012
    [4]ZHANG Linbao, TIAN Fei, CHEN Haigang, ZHANG Zhe, YE Guoling, LI Yitong, TANG Haiwei. Comparative transcriptome analysis in livers of female and male marine medaka (Oryzias melastigma)[J]. South China Fisheries Science, 2023, 19(3): 88-97. DOI: 10.12131/20220250
    [5]SONG Ruhao, HU Ruiqin, LI Genfang, ZHANG Zhicong, XU Qianghua. Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology[J]. South China Fisheries Science, 2022, 18(6): 60-68. DOI: 10.12131/20220038
    [6]GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125
    [7]SHEN Ye, WANG Xingqiang, CAO Mei, ZHENG Nianhao, CHEN Baiyao, QIN Chuanxin. Transcriptome analysis of Exopalaemon carinicauda under low salinity stress[J]. South China Fisheries Science, 2020, 16(5): 19-32. DOI: 10.12131/20190267
    [8]HUO Huanhuan, LIU Yu, ZHOU Qiubai, GUO Feng, WEI Lili, PENG Mo, ZHANG Yanping, CHEN Wenjing. Primary study on differentially expressed genes screening of Monopterus albus and their regulation mechanism[J]. South China Fisheries Science, 2020, 16(1): 1-8. DOI: 10.12131/20190176
    [9]HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066
    [10]WU Mianzhi, YANG Lishi, ZHOU Falin, HUANG Jianhua, JIANG Song, ZHU Caiyan, JIANG Shigui. Genome sequence analysis and expression of two CHH genes in tiger shrimp (Penaeus monodon)[J]. South China Fisheries Science, 2018, 14(4): 27-36. DOI: 10.3969/j.issn.2095-0780.2018.04.004
  • Cited by

    Periodical cited type(4)

    1. 郭丽,邓一深,张文馨,张倩,李凡一,于政达. 底栖动物群落扰动作用对沉积物-水界面生源要素的影响. 生态学报. 2025(07): 3474-3486 .
    2. 吴春梅,杨柳明,王维奇,罗欣婕. 闽江河口湿地围垦后土壤微生物残体碳特征. 环境科学学报. 2024(12): 360-368 .
    3. 洪妍,杨平,仝川,赵光辉,李玲,唐晨,张彦,谭莹莹,阮蔓菁. 亚热带河口区对虾养殖池塘浮游植物初级生产力变化. 湖泊科学. 2022(03): 881-893 .
    4. 林于蓝,陈钰,尹晓雷,曾庆淞,王维奇. 围垦养殖与退塘还湿对闽江河口湿地土壤铁碳结合特征的影响. 环境科学学报. 2022(07): 466-477 .

    Other cited types(4)

Catalog

    Recommendations
    3组常用鱼类edna宏条形码通用引物对三亚水环境样品的物种检出效果比较
    郭瑶杰 et al., 南方水产科学, 2025
    海洋牧场建设效益评价研究进展与展望
    袁华荣 et al., 南方水产科学, 2024
    红鳍笛鲷幼鱼对不同开孔形状和尺寸人工鱼礁模型的行为偏好探究
    江满菊 et al., 南方水产科学, 2024
    广西银滩南部海域海洋牧场渔业资源评估
    牛麓连 et al., 南方水产科学, 2024
    海南岛东部海域拖网网囊网目选择性研究
    赵海龙 et al., 水产科学, 2025
    辽东湾多锚单片张网鱼虾分离网片的选择性研究
    QIN Xuyang et al., FISHERY MODERNIZATION, 2024
    Mfgtn: a multi-modal fast gated transformer for identifying single trawl marine fishing vessel
    Gu, Yanming et al., OCEAN ENGINEERING, 2024
    A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies
    Tian, Yuan et al., MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023
    Hybrid model approach for hilly sub-watershed prioritization using morphometric parameters: a case study from bakkhali river watershed in cox’s bazar, bangladesh
    GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
    Optimization of low-power femtosecond laser trepan drilling by machine learning and a high-throughput multi-objective genetic algorithm
    OPTICS AND LASER TECHNOLOGY, 2021
    Powered by
    Article views (302) PDF downloads (93) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return