ZHANG Linbao, TIAN Fei, CHEN Haigang, ZHANG Zhe, YE Guoling, LI Yitong, TANG Haiwei. Comparative transcriptome analysis in livers of female and male marine medaka (Oryzias melastigma)[J]. South China Fisheries Science, 2023, 19(3): 88-97. DOI: 10.12131/20220250
Citation: ZHANG Linbao, TIAN Fei, CHEN Haigang, ZHANG Zhe, YE Guoling, LI Yitong, TANG Haiwei. Comparative transcriptome analysis in livers of female and male marine medaka (Oryzias melastigma)[J]. South China Fisheries Science, 2023, 19(3): 88-97. DOI: 10.12131/20220250

Comparative transcriptome analysis in livers of female and male marine medaka (Oryzias melastigma)

More Information
  • Received Date: September 16, 2022
  • Revised Date: November 27, 2022
  • Accepted Date: December 07, 2022
  • Available Online: December 18, 2022
  • As a gonochoristic model animal, marine medaka (Oryzias melastigma) is good for studying the sex-specific responses of organisms to xenobiotic pollutants. We used comparative transcriptomics technology to systematically investigate the differentially expressed genes (DEGs) between the liver tissues of female and male medaka. We identified 683 significantly up-regulated DEGs in the females, and 668 DEGs in the males. The high expressed DEGs in the females were involved in the reproductive and sex hormone synthesis pathways, such as vitellogenin and estrogen receptor. The top twenty DEGs in the males were involved in energy metabolism, cytoskeleton and muscle contraction, such as pyruvate kinase, creatine kinase, myosin and troponin. Except for the DNA mismatch repair protein, all the 17 DEGs had similar magnitude and expression trends by both qRT-PCR and RNA-seq analyses, which confirms the reliability of the RNA-seq data. The results demonstrate that the gene expression patterns are different in the livers of female and male medaka, and the DEGs provide a theoretical basis for promoting the molecular mechanism of sex-specific responses of medaka to xenobiotic pollutants.
  • [1]
    CHEN X P, LI L, CHENG J P, et al. Molecular staging of marine medaka: a model organism for marine ecotoxicity study[J]. Mar Pollut Bull, 2011, 63(5/6/7/8/9/10/11/12): 309-317.
    [2]
    KIM B, KIM J, CHOI I Y, et al. Omics of the marine medaka (Oryzias melastigma) and its relevance to marine environmental research[J]. Mar Environ Res, 2016, 113: 141-152. doi: 10.1016/j.marenvres.2015.12.004
    [3]
    YIN X H, LIU Y, ZEB R, et al. The intergenerational toxic effects on offspring of medaka fish Oryzias melastigma from parental benzo[a]pyrene exposure via interference of the circadian rhythm[J]. Environ Pollut, 2020, 267: 115437. doi: 10.1016/j.envpol.2020.115437
    [4]
    LU W J, LONG L, ZHAO P Q, et al. Perfluorinated compounds disrupted osmoregulation in Oryzias melastigma during acclimation to hypoosmotic environment[J]. Ecotoxicol Environ Saf, 2021, 223: 112613. doi: 10.1016/j.ecoenv.2021.112613
    [5]
    FONG C C, SHI Y F, YU W K, et al. iTRAQ-based proteomic profiling of the marine medaka (Oryzias melastigma) gonad exposed to BDE-47[J]. Mar Pollut Bull, 2014, 85(2): 471-478. doi: 10.1016/j.marpolbul.2014.04.024
    [6]
    WANG R F, ZHU L M, ZHANG J, et al. Developmental toxicity of copper in marine medaka (Oryzias melastigma) embryos and larvae[J]. Chemosphere, 2020, 247: 125923. doi: 10.1016/j.chemosphere.2020.125923
    [7]
    ZHANG Y B, WANG J, LU L, et al. Genotoxic biomarkers and histological changes in marine medaka (Oryzias melastigma) exposed to 17α-ethynylestradiol and 17β-trenbolone[J]. Mar Pollut Bull, 2020, 150: 110601. doi: 10.1016/j.marpolbul.2019.110601
    [8]
    CONG Y, JIN F, WANG J Y, et al. The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma[J]. Aquat Toxicol, 2017, 185: 11-18. doi: 10.1016/j.aquatox.2017.01.006
    [9]
    ZHANG Y T, CHEN M Y, HE S Q, et al. Microplastics decrease the toxicity of triphenyl phosphate (TPhP) in the marine medaka (Oryzias melastigma) larvae[J]. Sci Total Environ, 2020, 763: 143040.
    [10]
    CONG Y, JIN F, TIAN M, et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma)[J]. Chemosphere, 2019, 228: 93-100. doi: 10.1016/j.chemosphere.2019.04.098
    [11]
    KANG H M, BYEON E, JEONG H, et al. Different effects of nano- and microplastics on oxidative status and gut microbiota in the marine medaka Oryzias melastigma[J]. J Hazard Mater, 2020, 405: 124207.
    [12]
    靳非, 田淼, 穆景利, 等. 聚苯乙烯微塑料长期暴露对海水青鳉 (Oryzias melastigma) 亲代生长、繁殖及子代发育的影响[J]. 生态毒理学报, 2021, 16(4): 216-223.
    [13]
    WANG J, LI Y J, LU L, et al. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma)[J]. Environ Pollut, 2019, 254: 113024. doi: 10.1016/j.envpol.2019.113024
    [14]
    HE S W, YU D D, LI P, et al. A new perspective on endocrine disrupting effects of triphenyltin on marine medaka: from brain transcriptome, gut content metabolome and behavior[J]. Chemosphere, 2022, 307: 136190. doi: 10.1016/j.chemosphere.2022.136190
    [15]
    LIANG P P, SAQIB H S A, NI X M, et al. Long-read sequencing and de novo genome assembly of marine medaka (Oryzias melastigma)[J]. BMC Genomics, 2020, 21(1): 640. doi: 10.1186/s12864-020-07042-7
    [16]
    LAI K P, TAM N, WANG S Y, et al. Hypoxia causes sex-specific hepatic toxicity at the transcriptome level in marine medaka (Oryzias melastigma)[J]. Aquat Toxicol, 2020, 224: 105520. doi: 10.1016/j.aquatox.2020.105520
    [17]
    LIANG P P, SAPIB H S A, LIN Z Y, et al. RNA-seq analyses of marine medaka (Oryzias melastigma) reveals salinity responsive transcriptomes in the gills and livers[J]. Aquat Toxicol, 2021, 240: 105970. doi: 10.1016/j.aquatox.2021.105970
    [18]
    YE R R, LEI E N Y, LAM M H W, et al. Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47[J]. Environ Sci Pollut Res Int, 2011, 19(7): 2477-2487.
    [19]
    YU W K, SHI Y F, FONG C C, et al. Gender-specific transcriptional profiling of marine medaka (Oryzias melastigma) liver upon BDE-47 exposure[J]. Comp Biochem Physiol D, 2013, 8(3): 255-262.
    [20]
    YIN X H, ZEB R, WEI H, et al. Acute exposure of di (2-ethylhexyl) phthalate (DEHP) induces immune signal regulation and ferroptosis in Oryzias melastigma[J]. Chemosphere, 2021, 265: 129053. doi: 10.1016/j.chemosphere.2020.129053
    [21]
    QIAO Q, MANACH S L, SOTTON B, et al. Deep sexual dimorphism in adult medaka fish liver highlighted by multi-omic approach[J]. Sci Rep, 2016, 26(6): 32459.
    [22]
    ZHENG W L, XU H Y, LAM S H, et al. Transcriptomic analyses of sexual dimorphism of the zebrafish liver and the effect of sex hormones[J]. PLoS One, 2013, 8(1): e53562. doi: 10.1371/journal.pone.0053562
    [23]
    MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature methods, 2008, 5(7): 621-628. doi: 10.1038/nmeth.1226
    [24]
    LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [25]
    YOUNG M D, WAKEFIELD M J, SMYTH G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias[J]. Genome Biol, 2010, 11(2): R14. doi: 10.1186/gb-2010-11-2-r14
    [26]
    KANEHISA M, ARAKI M, GOTO S. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Res, 2008, 36: 480-484.
    [27]
    CHEN L G, ZHANG W P, YE R, et al. Chronic exposure of marine medaka (Oryzias melastigma) to 4, 5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) reveals its mechanism of action in endocrine disruption via the hypothalamus-pituitary-gonadal-liver (HPGL) axis[J]. Environ Sci Technol, 2016, 50(8): 4492-4501. doi: 10.1021/acs.est.6b01137
    [28]
    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method[J]. Methods, 2001, 25: 402-408. doi: 10.1006/meth.2001.1262
    [29]
    WU L Y, CHEN H G, RU H Y, et al. Sex-specific effects of triphenyltin chloride (TPT) on thyroid disruption and metabolizing enzymes in adult zebrafish (Danio rerio)[J]. Toxicol Lett, 2020, 331: 143-151. doi: 10.1016/j.toxlet.2020.06.004
    [30]
    WANG G D, WANG T Y, ZhANG X L, et al. Sex-specific effects of fluoride and lead exposures on histology, antioxidant physiology, and immune system in the liver of zebrafish (Danio rerio)[J]. Ecotoxicology, 2022, 31(3): 396-414. doi: 10.1007/s10646-022-02519-5
    [31]
    BAO S P, TANG W, FANG T. Sex-dependent and organ-specific toxicity of silver nanoparticles in livers and intestines of adult zebrafish[J]. Chemosphere, 2020, 249: 126172. doi: 10.1016/j.chemosphere.2020.126172
    [32]
    董忠典, 黎学友, 廖健, 等. 雌、雄弓背青鳉 (Oryzias curvinotus) 肝脏转录组比较分析[J]. 海洋与湖沼, 2020, 51(5): 1203-1213.
    [33]
    ARUKWE A, KULLMAN S W, HINTON D E. Differential biomarker gene and protein expressions in nonylphenol and estradiol-17β treated juvenile rainbow trout (Oncorhynchus mykiss)[J]. Comp Biochem Physiol C, 2001, 129(1): 1-10.
    [34]
    CHEN X P, LI V W T, YU R M K, et al. Choriogenin mRNA as a sensitive molecular biomarker for estrogenic chemicals in developing brackish medaka (Oryzias melastigma)[J]. Ecotoxicol Environ Saf, 2008, 71(1): 200-208. doi: 10.1016/j.ecoenv.2007.10.005
    [35]
    YE T, KANG M, HUANG Q S, et al. Exposure to DEHP and MEHP from hatching to adulthood causes reproductive dysfunction and endocrine disruption in marine medaka (Oryzias melastigma)[J]. Aquat Toxicol, 2014, 146: 115-126. doi: 10.1016/j.aquatox.2013.10.025
    [36]
    WANG X F, YANG Y J, ZHANG L P, et al. Endocrine disruption by di-(2-ethylhexyl) phthvalate in Chinese rare minnow (Gobiocypris rarus)[J]. Environ Toxicol Chem, 2013, 32(8): 1846-1854. doi: 10.1002/etc.2261
    [37]
    UREN-WEBSTER T M, LEWIS C, FILBY A L, et al. Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish[J]. Aquat Toxicol, 2010, 99(3): 360-369. doi: 10.1016/j.aquatox.2010.05.015
    [38]
    罗志嘉, 王佩, 彭娜, 等. 水产动物生长性别差异研究进展[J]. 水产学杂志, 2017, 30(6): 56-60. doi: 10.3969/j.issn.1005-3832.2017.06.011
    [39]
    ALVES A M, EUVERINK G J, BIBB M J, et al. Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3(2)[J]. Appl Environ Microbiol, 1997, 63(3): 956-961. doi: 10.1128/aem.63.3.956-961.1997
    [40]
    SCHORMANN N, HAYDEN K L, LEE P, et al. An overview of structure, function, and regulation of pyruvate kinases[J]. Protein Sci, 2019, 28(10): 1771-1784. doi: 10.1002/pro.3691
    [41]
    DUMINIL P, DAVANTURE M, OURY C, et al. Arabidopsis thaliana 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 2 activity requires serine 82 phosphorylation[J]. Plant J, 2021, 107(5): 1478-1489. doi: 10.1111/tpj.15395
    [42]
    MCLEISH M J, KENYON G L. Relating structure to mechanism in creatine kinase[J]. Crit Rev Biochem Mol Biol, 2005, 40(1): 1-20. doi: 10.1080/10409230590918577
    [43]
    KÜLTZ D. Molecular and evolutionary basis of the cellular stress response[J]. Annu Rev Physiol, 2005(67): 225-257.
    [44]
    MINTON A P. Confinement as a determinant of macromolecular structure and reactivity[J]. Cell, 1992, 63(3): 1090-1100.
    [45]
    吴聪颖. 微丝的基本性质与细胞核肌动蛋白[J]. 中国细胞生物学学报, 2019, 41(3): 381-386.
    [46]
    陈剑清, 张耀洲. EF手图像超家族成员-肌钙蛋白C的研究进展[J]. 生物工程学报, 2007, 23(3): 375-380. doi: 10.3321/j.issn:1000-3061.2007.03.003
    [47]
    吉成龙. 典型溴系阻燃剂对紫贻贝毒理效应的组学研究[D]. 烟台: 中国科学院烟台海岸带研究所, 2014: 107-109.
    [48]
    ROSE E, FLANAGAN S P, JONES A G. The effects of synthetic estrogen exposure on the sexually dimorphic liver transcriptome of the sex-role-reversed Gulf pipefish[J]. PLoS One, 2015, 10: e0139401. doi: 10.1371/journal.pone.0139401
    [49]
    CHEN H P, JIANG D N, LI Z Y, et al. Comparative physiological and transcriptomic profiling offers insight into the sexual dimorphism of hepatic metabolism in size-dimorphic spotted scat (Scatophagus argus)[J]. Life (Basel), 2021, 11(6): 589.
  • Related Articles

    [1]QIAO Di, LEI Ning, ZHU Junjie, ZHANG Chaonan, WANG Yanchao, ZHOU Ling. Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2024, 20(4): 164-176. DOI: 10.12131/20240050
    [2]WU Xiaopeng, HUANG Minwei, CHEN Xiaoying, PENG Kai, ZHAO Jichen, ZHONG Ping, LIU Fengkun, ZHANG Yehui, HUANG Wen. Transcriptome analysis of metamorphosis stage of Holothuria leucospilota[J]. South China Fisheries Science, 2023, 19(6): 84-96. DOI: 10.12131/20230105
    [3]LIU Meiling, SHANGGUAN Xiaozhao, WANG Xiaoqiang, WANG Yayu, WANG Guiling, LI Jiale. Molecular characterization and expression of MAP2K1 gene in Hyriopsis cumingii[J]. South China Fisheries Science, 2022, 18(5): 91-99. DOI: 10.12131/20210328
    [4]GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125
    [5]SHEN Ye, WANG Xingqiang, CAO Mei, ZHENG Nianhao, CHEN Baiyao, QIN Chuanxin. Transcriptome analysis of Exopalaemon carinicauda under low salinity stress[J]. South China Fisheries Science, 2020, 16(5): 19-32. DOI: 10.12131/20190267
    [6]HUO Huanhuan, LIU Yu, ZHOU Qiubai, GUO Feng, WEI Lili, PENG Mo, ZHANG Yanping, CHEN Wenjing. Primary study on differentially expressed genes screening of Monopterus albus and their regulation mechanism[J]. South China Fisheries Science, 2020, 16(1): 1-8. DOI: 10.12131/20190176
    [7]HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066
    [8]BEI Lei, SU Youlu, ZHAO Chao, XU Liwen, LIU Guangfeng, WANG Yu, GUO Zhixun, FENG Juan. Cloning rbsB gene from Vibrio harveyi and its expression[J]. South China Fisheries Science, 2018, 14(2): 75-82. DOI: 10.3969/j.issn.2095-0780.2018.02.010
    [9]LIN Aiqiang, XIE Yangjie, XU Shuangbin, YE Kun, GONG Shiqi, WANG Zhiyong. Cloning and expression profiling of gsdf and amh genes in large yellow croaker (Larimichthys crocea)[J]. South China Fisheries Science, 2017, 13(6): 1-13. DOI: 10.3969/j.issn.2095-0780.2017.06.001
    [10]YU Wenbo, ZHU Kecheng, GUO Huayang, ZHANG Nan, SUN Xiaoxiao, WU Na, ZHANG Dianchang. Cloning and expression analysis of MHCβ gene in Trachinotus ovatus[J]. South China Fisheries Science, 2017, 13(4): 69-79. DOI: 10.3969/j.issn.2095-0780.2017.04.009
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (419) PDF downloads (49) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return