Citation: | LIU Fan, LIU Xinxin, SONG Caixia, LI Xilei, ZHANG Jun, SU Shiping. Prokaryotic expression and polyclonal antibody preparation of Nesfatin-1 protein in Micropterus salmoides[J]. South China Fisheries Science, 2023, 19(4): 98-104. DOI: 10.12131/20230012 |
[1] |
白俊杰, 李胜杰. 我国大口黑鲈产业现状分析与发展对策[J]. 中国渔业经济, 2013, 31(5): 104-108. doi: 10.3969/j.issn.1009-590X.2013.05.017
|
[2] |
韩晓磊, 王浩, 高俊杰, 等. 工厂化循环水养殖条件下大口黑鲈生长特点分析[J]. 水产科学, 2020, 39(4): 567-572. doi: 10.16378/j.cnki.1003-1111.2020.04.014
|
[3] |
李武辉, 孙成飞, 董浚键, 等. 大口黑鲈开口摄食与转食人工配合饲料期消化系统发育特征[J]. 渔业科学进展, 2023, 44(1): 80-89. doi: 10.19663/j.issn2095-9869.20210714001
|
[4] |
满铭叁, 隋仲敏, 周慧慧, 等. 饲料中脂肪水平及脂肪源对大菱鲆幼鱼生长和代谢的影响[J]. 中国海洋大学学报(自然科学版), 2020, 50(10): 26-36. doi: 10.16441/j.cnki.hdxb.20190281
|
[5] |
池作授, 耿旭, 郭云学, 等. 奥尼罗非鱼仔稚鱼饲料中适宜脂肪水平的研究[J]. 中国饲料, 2010(20): 32-36. doi: 10.3969/j.issn.1004-3314.2010.20.010
|
[6] |
彭祥和. 大口黑鲈对高脂饲料的生理适应机制[D]. 重庆: 西南大学, 2017: 25.
|
[7] |
XIE S W, YIN P, TIAN L X, et al. Dietary supplementation of astaxanthin improved the growth performance, antioxidant ability and immune response of juvenile largemouth bass (Micropterus salmoides) fed high-fat diet[J]. Mar Drugs, 2020, 18(12): 642. doi: 10.3390/md18120642
|
[8] |
朱婷婷, 金敏, 孙蓬, 等. 饲料脂肪水平对大口黑鲈形体指标、组织脂肪酸组成、血清生化指标及肝脏抗氧化性能的影响[J]. 动物营养学报, 2018, 30(1): 126-137. doi: 10.3969/j.issn.1006-267x.2018.01.017
|
[9] |
OH I S, SHIMIZU H, SATOH T, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus[J]. Nature, 2006, 443(7112): 709-712. doi: 10.1038/nature05162
|
[10] |
SAITO R, SONODA S, UENO H, et al. Involvement of central nesfatin-1 neurons on oxytocin-induced feeding suppression in rats[J]. Neurosci Lett, 2017, 655: 54-60. doi: 10.1016/j.neulet.2017.06.049
|
[11] |
ATSUCHI K, ASAKAWA A, USHIKAI M, et al. Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice[J]. Neuroreport, 2010, 21(15): 1008-1011. doi: 10.1097/WNR.0b013e32833f7b96
|
[12] |
SCHALLA M A, STENGEL A. The role of the gastric hormones ghrelin and nesfatin-1 in reproduction[J]. Int J Mol Sci, 2021, 22(20): 11059. doi: 10.3390/ijms222011059
|
[13] |
GONZALEZ R, REINGOLD B K, GAO X D, et al. Nesfatin-1 exerts a direct, glucose-dependent insulinotropic action on mouse islet beta- and MIN6 cells[J]. J Endocrinol, 2011, 208(3): R9-R16.
|
[14] |
ZEGERS D, BECKERS S, MERTENS I L, et al. Association between polymorphisms of the Nesfatin gene, NUCB2, and obesity in men[J]. Mol Genet Metab, 2011, 103(3): 282-286. doi: 10.1016/j.ymgme.2011.03.007
|
[15] |
SIMA M, RONALD G, ROLANDO C, et al. Long-term infusion of nesfatin-1 causes a sustained regulation of whole-body energy homeostasis of male Fischer 344 rats[J]. Front Cell Dev Biol, 2015, 3: 22.
|
[16] |
YIN Y, LI Z R, GAO L, et al. AMPK-dependent modulation of hepatic lipid metabolism by nesfatin-1[J]. Mol Cell Endocrinol, 2015, 417(C): 20-26.
|
[17] |
DONG J, XU H, XU H, et al. Nesfatin-1 stimulates fatty-acid oxidation by activating amp-activated protein kinase in stz-induced type 2 diabetic mice[J]. PLoS One, 2013, 8(12): e83397. doi: 10.1371/journal.pone.0083397
|
[18] |
BLANCO A M, VELASCO C, BERTUCCI J I, et al. Nesfatin-1 regulates feeding, glucosensing and lipid metabolism in rainbow trout[J]. Front Endocrinol, 2018, 9: 484. doi: 10.3389/fendo.2018.00484
|
[19] |
FIELD C M, OEGEMA K, ZHENG Y, et al. Purification of cytoskeletal proteins using peptide antibodies[J]. Methods Enzymol, 1998, 298: 525-541.
|
[20] |
HAYAT S M G, FARAHANI N, GOLICHENARI B, et al. Recombinant protein expression in Escherichia coli (E. coli): what we need to know[J]. Curr Pharm Design, 2018(6): 718-725.
|
[21] |
张磊, 唐永凯, 李红霞, 等. 促进原核表达蛋白可溶性的研究进展[J]. 中国生物工程杂志, 2021, 41(Z1): 138-149. doi: 10.13523/j.cb.2006016
|
[22] |
马媛媛, 何健民, 康永杰. 外源性蛋白在大肠杆菌中可溶性表达的策略综述[J]. 世界科技研究与发展, 2015, 37(5): 627-630. doi: 10.16507/j.issn.1006-6055.2015.05.033
|
[23] |
SORENSEN H P, MORTENSEN K K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli[J]. Microb Cell Fact, 2005, 4: 1. doi: 10.1186/1475-2859-4-1
|
[24] |
ZHOU P, WAGNER G. Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies[J]. J Biomol NMR, 2010, 46(1): 23-31.
|
[25] |
COSTA S, ALMEIDA A, CASTRO A, et al. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system[J]. Front Microbiol, 2014, 5: 63.
|
[26] |
沈娇娇. 鱼类出血性败血症病毒基质蛋白原核表达、多克隆抗体制备及应用[D]. 合肥: 安徽农业大学, 2018: 33.
|
[27] |
李沛轩, 刘晓霞, 刘丽萍, 等. 双峰驼FcαR基因的原核表达、抗体制备及其在脾脏中的表达模式[J]. 农业生物技术学报, 2022, 30(10): 1944-1953. doi: 10.3969/j.issn.1674-7968.2022.10.009
|
[28] |
白宇彤, 黄志成, 李章程, 等. 牛支原体MBOVPG45_0212的原核表达及其免疫原性分析[J]. 中国兽医科学, 2022, 52(12): 1538-1544. doi: 10.16656/j.issn.1673-4696.2022.0200
|
[29] |
程汉良, 夏德全, 吴婷婷. 鱼类脂类代谢调控与脂肪肝[J]. 动物营养学报, 2006(4): 294-298. doi: 10.3969/j.issn.1006-267X.2006.04.013
|
[30] |
佟春萌, 陈乃松, 季振尧, 等. 大口黑鲈胰腺的组织学观察[J]. 上海海洋大学学报, 2014, 23(6): 814-819.
|
[31] |
苏时萍, 李卿青, 谢启明, 等. 胭脂鱼核连蛋白2/Nesfatin-1基因克隆及其在间脑与肝胰脏中的差异表达[J]. 浙江大学学报 (农业与生命科学版), 2021, 47(5): 637-646.
|
[32] |
王中亮. 鸡VNN1基因在肝脏脂代谢中的功能及其调控机制的研究[D]. 南京: 南京农业大学, 2019: 90.
|
[33] |
刘爱晶. 传染性法氏囊病病毒细胞受体的筛选及鉴定[D]. 北京: 中国农业科学院, 2022: 22.
|
[1] | WANG Shaomin, MA Zhenhua, HU Jing, WANG Wenfei, MAO Fukao, BAI Zemin, WANG Lixian. Hydrodynamic performance of a square-type submersible net cage under combined wind, wave and current conditions[J]. South China Fisheries Science, 2025, 21(2): 1-13. DOI: 10.12131/20240245 |
[2] | FU Zhiguo, DING Guolin, DUAN Jinghui, YAO Yunpeng, WANG Lin. Calculation method of hydrodynamic load factors for aquaculture platform netting[J]. South China Fisheries Science. DOI: 10.12131/20240279 |
[3] | JIANG Shuxia, KONG Xianghong, HUANG Xiaoshuang, YE Xuchang, CAO Daomei. Study on hydrodynamic characteristics and flow field visualization of multi-blade controllable otter board based on CFD[J]. South China Fisheries Science, 2024, 20(5): 136-148. DOI: 10.12131/20240095 |
[4] | LIU Jingbin, TANG Hao, XU Liuxiong, SUN Qiuyang, LIU Wei, YIN Liqiang, ZHANG Feng. Evaluation of scale effect on hydrodynamic force of V-shaped otter board based on CFD[J]. South China Fisheries Science, 2022, 18(5): 128-137. DOI: 10.12131/20210355 |
[5] | HAO Yuxin, WAN Rong, ZHOU Cheng, YE Xuchang, GUAN Qinglong, ZHANG Xiaoxian. Hydrodynamic performance of Argentine shortfin squid (Illex argentinus) bottom trawl[J]. South China Fisheries Science, 2022, 18(5): 118-127. DOI: 10.12131/20210343 |
[6] | SUI Liuyang, HUANG Xiaohua, LIU Haiyang, HU Yu, YUAN Taiping, WANG Shaomin, TAO Qiyou. Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage[J]. South China Fisheries Science, 2021, 17(4): 98-108. DOI: 10.12131/20210049 |
[7] | WANG Shaomin, YUAN Taiping, YANG Xieqiu, TAO Qiyou, SHEN Wei, HU Yu, HUANG Xiaohua. Frequency domain analysis of hydrodynamic characteristics of mariculture ship with truss and plate frame hybrid structure[J]. South China Fisheries Science, 2021, 17(4): 82-90. DOI: 10.12131/20210021 |
[8] | LI Jie, YAN Lei, YANG Bingzhong, ZHANG Peng. Numerical simulation on untrammeled settlement process of falling-net[J]. South China Fisheries Science, 2017, 13(4): 105-114. DOI: 10.3969/j.issn.2095-0780.2017.04.013 |
[9] | LIU Jian, HUANG Hongliang, WU Yue, RAO Xin, LI Lingzhi, CHEN Shuai, YANG Jialiang, ZHOU Bin. Model test of hydrodynamic characteristics of two types of vertical cambered slotted otter boards[J]. South China Fisheries Science, 2015, 11(1): 68-74. DOI: 10.3969/j.issn.2095-0780.2015.01.010 |
[10] | LIU Lili, WAN Rong, WANG Xijie, WANG Sijie, WANG Yunzhong. Analysis of effects of fishery stock enhancement based on system dynamics model[J]. South China Fisheries Science, 2012, 8(1): 16-23. DOI: 10.3969/j.issn.2095-0780.2012.01.003 |
1. |
李明. 七轴浇铸机器人的运动学建模和仿真技术. 现代制造技术与装备. 2024(02): 215-217 .
![]() |