SONG Ruhao, HU Ruiqin, LI Genfang, ZHANG Zhicong, XU Qianghua. Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology[J]. South China Fisheries Science, 2022, 18(6): 60-68. DOI: 10.12131/20220038
Citation: SONG Ruhao, HU Ruiqin, LI Genfang, ZHANG Zhicong, XU Qianghua. Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology[J]. South China Fisheries Science, 2022, 18(6): 60-68. DOI: 10.12131/20220038

Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology

More Information
  • Received Date: February 20, 2022
  • Revised Date: April 29, 2022
  • Accepted Date: June 14, 2022
  • Available Online: July 28, 2022
  • To explore the regulatory mechanism of fish response to hypoxia stress, we stressed 1-month-old wild zebrafish (Danio rerio) by hypoxia to 1.5 mg·L−1 for 2 months, and then investigated the liver tissues by transcriptome sequencing and comparative analysis. According to the KEGG analysis performed on 3 270 differential genes in normoxia and hypoxia groups, the genes mainly enriched in pathways such as cell proliferation, lipid metabolism, carbohydrate metabolism and amino acid metabolism. Among them, the up-regulated 1 864 genes were mainly related to cell proliferation, while the down-regulated 1 406 genes were mainly involved in lipid metabolism. We performed a GO enrichment analysis on the differential genes, and found that the function of iron ion banding was significantly different. Based on the analysis of expression of iron metabolism-related genes, the iron ion storage related genes fthl28 and fthl31 changed significantly, which suggests that the iron ion content in zebrafish liver (ZFL) tissue changes significantly under hypoxic stress. Moreover, we conducted the in vitro validation experiments by using ZFL cells which were subjected to 0.1% (Volume fraction) O2 hypoxia stress. The results show that with the prolongation of hypoxia stress time, the survival rate of ZFL cells decreased, and the expression of iron metabolism-related genes and ferritin in the cells decreased significantly. In conclusion, iron metabolism regulation is an important response process under hypoxia stress. Hypoxia may lead to disturbance of intracellular iron metabolism, and prolonging hypoxia time will form a new iron homeostasis. The study provides a theoretical basis and references for exploring the hypoxia adaptation mechanism of fish.
  • [1]
    QIANG J, ZHONG C Y, BAO J W, et al. The effects of temperature and dissolved oxygen on the growth, survival and oxidative capacity of newly hatched hybrid yellow catfish larvae (Tachysurus fulvidraco♀×Pseudobagrus vachellii♂)[J]. J Therm Biol, 2019, 86: 102436. doi: 10.1016/j.jtherbio.2019.102436
    [2]
    VALAVANIDIS A, VLAHOGIANNI T, DASSENAKIS M, et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants[J]. Ecotox Environ Safe, 2006, 64(2): 178-189. doi: 10.1016/j.ecoenv.2005.03.013
    [3]
    吴志昊, 尤锋, 王英芳, 等. 低氧和高氧对大菱鲆幼鱼红细胞核异常及氧化抗氧化平衡的影响[J]. 上海海洋大学学报, 2011, 20(6): 808-813.
    [4]
    徐贺, 陈秀梅, 王桂芹, 等. 低氧胁迫在水产养殖中的研究进展[J]. 饲料工业, 2016, 37(2): 33-37.
    [5]
    PÖRTNER H O. Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems[J]. J Exp Biol, 2010, 213(6): 881-893. doi: 10.1242/jeb.037523
    [6]
    熊向英, 黄国强, 彭银辉, 等. 低氧胁迫对鲻幼鱼生长、能量代谢和氧化应激的影响[J]. 水产学报, 2016, 40(1): 73-82.
    [7]
    ANDREWS N C. Iron homeostasis: insights from genetics and animal models[J]. Nat Rev Genet, 2000, 1(3): 208-217.
    [8]
    LIEU P T, HEISKALA M, PETERSON P A, et al. The roles of iron in health and disease[J]. Mol Aspects Med, 2001, 22(1/2): 1-87.
    [9]
    SHAH Y M, XIE L W. Hypoxia-inducible factors link iron homeostasis and erythropoiesis[J]. Gastroenterology, 2014, 146(3): 630-642. doi: 10.1053/j.gastro.2013.12.031
    [10]
    PUIG S, RAMOS-ALONSO L, ROMERO A M, et al. The elemental role of iron in DNA synthesis and repair[J]. Metallomics, 2017, 9(11): 1483-1500. doi: 10.1039/C7MT00116A
    [11]
    MEYER J. Iron-sulfur protein folds, iron-sulfur chemistry, and evolution[J]. J Biol Inorg Chem, 2008, 13(2): 157-170. doi: 10.1007/s00775-007-0318-7
    [12]
    SCHEUFLER K M. Tissue oxygenation and capacity to deliver O2 do the two go together?[J]. Transfus Apher Sci, 2004, 31(1): 45-54. doi: 10.1016/j.transci.2004.06.001
    [13]
    ZHANG G S, ZHAO C, WANG Q T, et al. Identification of HIF-1 signaling pathway in Pelteobagrus vachelli using RNA-Seq: effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, and hematology indices[J]. J Comp Physiol B, 2017, 187(7): 931-943. doi: 10.1007/s00360-017-1083-8
    [14]
    REINKE H, ASHER G. Circadian clock control of liver metabolic functions[J]. Gastroenterology, 2016, 150(3): 574-580. doi: 10.1053/j.gastro.2015.11.043
    [15]
    KIETZMANN T. Liver zonation in health and disease: hypoxia and hypoxia-inducible transcription factors as concert masters[J]. Int J Mol Sci, 2019, 20(9): 2347. doi: 10.3390/ijms20092347
    [16]
    GRACEY A Y, TROLL J V, SOMERO G N. Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis[J]. P Natl Acad Sci USA, 2001, 98(4): 1993-1998. doi: 10.1073/pnas.98.4.1993
    [17]
    MEER D, WITTE F, BAKKER M, et al. Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish[J]. Am J Physiol Regul, 2005, 289(5): R1512-9.
    [18]
    ZHONG X P, DAN W, ZHANG Y B, et al. Identification and characterization of hypoxia-induced genes in Carassius auratus blastulae embryonic cells using suppression subtractive hybridization[J]. Comp Biochem Physiol B, 2009, 152(2): 161-170. doi: 10.1016/j.cbpb.2008.10.013
    [19]
    LAI K P, TAM N, WANG S Y, et al. Hypoxia causes sex-specific hepatic toxicity at the transcriptome level in marine medaka (Oryzias melastigma)[J]. Aquat Toxicol, 2020, 224: 105520. doi: 10.1016/j.aquatox.2020.105520
    [20]
    QI D L, CHAO Y, WU R R. Transcriptome analysis provides insights into the adaptive responses to hypoxia of a schizothoracine fish (Gymnocypris eckloni)[J]. Front Physiol, 2018, 9: 1326. doi: 10.3389/fphys.2018.01326
    [21]
    BECK B H, FULLER S A, LI C, et al. Hepatic transcriptomic and metabolic responses of hybrid striped bass (Morone saxatilis×Morone chrysops) to acute and chronic hypoxic insult[J]. Comp Biochem Physiol D, 2016, 18: 1-9.
    [22]
    LI M, WANG X, QI C, et al. Metabolic response of nile tilapia (Oreochromis niloticus) to acute and chronic hypoxia stress[J]. Aquaculture, 2018, 495: 187-195. doi: 10.1016/j.aquaculture.2018.05.031
    [23]
    EVERETT M V, ANTAL C E, CRAWFORD D L. The effect of short-term hypoxic exposure on metabolic gene expression[J]. J Exp Zool A, 2012, 317(1): 9-23.
    [24]
    XIA J H, LI H L, LI B J, et al. Acute hypoxia stress induced abundant differential expression genes and alternative splicing events in heart of tilapia[J]. Gene, 2017, 639: 52-61.
    [25]
    江炎庭, 苟潇, 李明丽, 等. 高原民族和动物低氧适应血液生理特征及相关基因研究进展[J]. 中国畜牧兽医, 2012, 39(10): 149-153. doi: 10.3969/j.issn.1671-7236.2012.10.035
    [26]
    TEROVA G, RIMOLDI S, CECCUZZI P, et al. Molecular characterization and in vivo expression of hypoxia inducible factor (HIF)-1α in sea bass (Dicentrarchus labrax) exposed to acute and chronic hypoxi[J]. Ital J Anim Sci, 2009, 8(S2): 875-877.
    [27]
    HUANG J S, LI H J, GUO Z X, et al. Identification and expression analysis of cobia (Rachycentron canadum) liver-related miRNAs under hypoxia stress[J]. Fish Physiol Biochem, 2021, 47(6): 1951-1967. doi: 10.1007/s10695-021-01017-5
    [28]
    GAO W X, ZHAO J, GAO Z H, et al. Synergistic interaction of light alcohol administration in the presence of mild iron overload in a mouse model of liver injury: involvement of triosephosphate isomerase nitration and inactivation[J]. PLoS One, 2017, 12(1): e0170350. doi: 10.1371/journal.pone.0170350
    [29]
    LONG Y, YAN J J, SONG G L, et al. Transcriptional events co-regulated by hypoxia and cold stresses in zebrafish larvae[J]. BMC Genom, 2015, 16(1): 385. doi: 10.1186/s12864-015-1560-y
    [30]
    FUHRMANN D C, MONDORF A, BEIFUSS J, et al. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis[J]. Redox Biol, 2020, 36: 101670. doi: 10.1016/j.redox.2020.101670
    [31]
    李海洲, 刘玉倩, 王海涛, 等. 低氧暴露对大鼠骨骼肌L6细胞铁代谢的影响[J]. 生理学报, 2011, 63(4): 347-352.
  • Related Articles

    [1]REN Xiaoyao, TANG Baojun, ZHENG Hanfeng, LIU Yujia, WEI Tao. Effects of acute hypoxia stress on respiratory metabolism and related gene expression of juvenile Babylonia areolate[J]. South China Fisheries Science, 2025, 21(2): 149-156. DOI: 10.12131/20240205
    [2]ZHANG Linbao, TIAN Fei, CHEN Haigang, ZHANG Zhe, YE Guoling, LI Yitong, TANG Haiwei. Comparative transcriptome analysis in livers of female and male marine medaka (Oryzias melastigma)[J]. South China Fisheries Science, 2023, 19(3): 88-97. DOI: 10.12131/20220250
    [3]JI Yudan, SUN Zhipeng, LYU Weihua, LU Cuiyun, CAO Dingchen, LIU Tianqi, ZHOU Jia, ZHENG Xianhu. Characterization and expression analysis of ho1 from Sander lucioperca under acute hypoxia stress[J]. South China Fisheries Science, 2023, 19(2): 98-106. DOI: 10.12131/20220187
    [4]JIA Huining, SHI Miaomiao, BIAN Yongle, SHI Chongjing, LIU Hengwei, SONG Xuehong, QIN Fenju. Effects of nanometer selenium on immune protection and antioxidant ability of Eriocheir sinensis under hypoxia stress[J]. South China Fisheries Science, 2022, 18(6): 100-109. DOI: 10.12131/20220106
    [5]SONG Ruhao, HU Ruiqin, LI Genfang, ZHANG Zhicong, XU Qianghua. Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology[J]. South China Fisheries Science, 2022, 18(6): 60-68. DOI: 10.12131/20220038
    [6]SAN Lize, LIU Baosuo, ZHANG Nan, GUO Liang, GUO Huayang, ZHU Kecheng, ZHANG Dianchang. Mining of InDel marker and association analysis of hypoxia tolerance traits in Trachinotus ovatus based on resequencing[J]. South China Fisheries Science, 2022, 18(5): 100-109. DOI: 10.12131/20210347
    [7]GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125
    [8]SUN Yongxu, DONG Hongbiao, WANG Wenhao, CAO Ming, DUAN Yafei, LI Hua, LIU Qingsong, ZHANG Jiasong. Effects of periodic hypoxia stress on intestinal microflora structure of Lateolabrax maculatus[J]. South China Fisheries Science, 2019, 15(4): 46-52. DOI: 10.12131/20190021
    [9]OU Youjun, CHEN Shixi, WANG Pengfei, LI Jia'er, WEN Jiufu, WANG Wen, XIE Mujiao. Study on oxidative stress response and physiological metabolism related indices of Trachinotus ovatus under hyp-oxia stress[J]. South China Fisheries Science, 2017, 13(3): 120-124. DOI: 10.3969/j.issn.2095-0780.2017.03.016
    [10]CHEN Shixi, WANG Pengfei, OU Youjun, LI Jia′er, WEN Jiufu, WANG Wen, XIE Mujiao. Acute and chronic hypoxia effect on gills of golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science, 2017, 13(1): 124-130. DOI: 10.3969/j.issn.2095-0780.2017.01.016

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return