GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125
Citation: GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125

Transcriptome analysis of Plectropomus leopardus liver under different flow velocity

More Information
  • Received Date: April 21, 2021
  • Revised Date: July 18, 2021
  • Accepted Date: July 28, 2021
  • Available Online: August 10, 2021
  • Water flow velocity is one of important eco-environment factors which affects the fish growth. In order to explore the function and expression of related genes of Plectropomus leopardus under different flow velocity, we conducted a transcriptome analysis of liver tissue of P. leopardus under different flow velocity by RNA-seq technology. We selected the fish fry of P. leopardus with identical size from the same breeding batch and cultured them for 150 d with water flow velocity of 0.1 m·s−1 (Low flow velocity, LFV) and 0.4 m·s−1 (High flow velocity, HFV). Then, we conducted a transcriptome analysis on the liver so as to investigate the difference of gene expression patterns with different flow velocity. We had obtained a total of 1 977 differentially expressed genes (DEGs) by transcriptome analysis (999 up-regulated and 978 down-regulated for LFV-HFV, respectively). The GO functional annotation reveals that 1124 DEGs were annotated in Gene Ontology Consortium and assigned to 56 functional terms. KEGG pathway analysis shows that 573 DEGs belonged to 154 pathways, and PPAR signaling pathway was most significantly enriched. Histological observation of livers of the tested fish indicates that the difference in fat contents between LFV and HFV group was significant, and the fat content was obviously higher in LFV than in HFV (P<0.05). According to the transcriptome analysis, we excavated many DEGs under different flow velocity, which provids technical support for further research on the molecular regulation mechanism of adaptability to change in flow velocity of P. leopardus.
  • [1]
    FRISCH A, ANDERSON T. Physiological stress responses of two species of coral trout (Plectropomus leopardus and Plectropomus maculaus)[J]. Comp Biochem Physiol A, 2005, 140(3): 317-327. doi: 10.1016/j.cbpb.2005.01.014
    [2]
    关献涛, 吴洪喜, 马建忠, 等. 饵料中添加自然产物对豹纹鳃棘鲈生长和体色的影响[J]. 海洋学研究, 2018, 36(2): 80-91. doi: 10.3969/j.issn.1001-909X.2018.02.011
    [3]
    殷艳慧, 蒋万胜, 潘晓赋, 等. 水产养殖鱼类生长性状研究进展[J]. 中国水产科学, 2020, 27(4): 463-484.
    [4]
    王永波, 陈国华, 林彬, 等. 豹纹鳃棘鲈胚胎发育的初步观察[J]. 海洋科学, 2009, 33(3): 21-26.
    [5]
    BURGESS A I, CALLAN C K, TOUSE R, et al. Increasing survival and growth in larval leopard coral grouper (Plectropomus leopardus) using intensively cultured Parvocalanus crassirostris nauplii[J]. J World Aquacult Soc, 2020, 51(1): 171-182. doi: 10.1111/jwas.12635
    [6]
    陈超, 吴雷明, 李炎璐, 等. 豹纹鳃棘鲈 (Plectropomus leopardus) 早期形态与色素变化及添加剂对其体色的影响[J]. 渔业科学进展, 2014, 35(5): 83-90. doi: 10.11758/yykxjz.20140512
    [7]
    徐晓丽, 邵蓬, 李灏, 等. 豹纹鳃棘鲈致病性哈维氏弧菌的分离鉴定与系统发育分析[J]. 华中农业大学学报, 2014, 33(4): 112-118.
    [8]
    KENZO Y, KAZUHISA Y, KIMIO A, et al. Influence of light intensity on feeding, growth, and early survival of leopard local grouper (Plectropomus leopardus) larvae under mass-scale rearing conditions[J]. Aquaculture, 2008, 279(1/2/3/4): 55-62.
    [9]
    涂志刚, 蒋玉峰, 邱名毅. 三亚崖州区豹纹鳃棘鲈养殖现状与发展建议[J]. 中国水产, 2019(12): 54-55.
    [10]
    HOCKLEY F A, WILSON C A M E, BREW A, et al. Fish responses to flow velocity and turbulence in relation to size, sex and parasite load[J]. J R Soc Interface, 2014, 8(14): 1-11.
    [11]
    OGATA H Y, OKU H. Effects of water velocity on growth performance of juvenile Japanese flounder Paralichthys olivaceus[J]. J World Aquac Soc, 2000, 31(2): 225-231. doi: 10.1111/j.1749-7345.2000.tb00357.x
    [12]
    MERINO G E, PIEDRAHITA R H, CONKLIN D E. Effect of water velocity on the growth of California halibut (Paralichthys californicus) juveniles[J]. Aquaculture, 2007, 271(1/2/3/4): 206-215.
    [13]
    SUN G, LI M, WANG J, et al. Effects of flow rate on growth performance and welfare of juvenile turbot (Scophthalmus maximus L.) in recirculating aquaculture systems[J]. Aquacult Res, 2016, 47: 1341-1352. doi: 10.1111/are.12597
    [14]
    黄苑媚, 刘志刚, 谢恩义, 等. 水流速率对全缘马尾藻幼孢子体生长和生理活性的影响[J]. 广东海洋大学学报, 2014, 34(6): 45-50. doi: 10.3969/j.issn.1673-9159.2014.06.008
    [15]
    林明德, 陈刚, 马骞, 等. 杂交石斑鱼和母本褐点石斑鱼转录组测序及差异表达基因分析[J]. 广东海洋大学学报, 2019, 39(3): 15-23. doi: 10.3969/j.issn.1673-9159.2019.03.003
    [16]
    JULIANA C S, DOUGLAS D, MARTINS L F, et al. RNA-Seq differential expression analysis: an extended review and a software tool[J]. PLoS One, 2017, 12(12): e0190152. doi: 10.1371/journal.pone.0190152
    [17]
    WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1): 57-63. doi: 10.1038/nrg2484
    [18]
    QIAN X, BA Y, ZHUANG Q, et al. RNA-Seq technology and its application in fish transcriptomics[J]. Omics, 2014, 18(2): 98-110. doi: 10.1089/omi.2013.0110
    [19]
    罗辉, 叶华, 肖世俊, 等. 转录组学技术在水产动物研究中的运用[J]. 水产学报, 2015, 39(4): 598-607.
    [20]
    张旭, 周毅, 罗永巨, 等. 光周期影响罗非鱼脑组织转录组基因表达分析[J]. 西南农业学报, 2019, 32(11): 2704-2711.
    [21]
    赵超平. 卵形鲳鲹盐度适应调控机制研究[D]. 上海: 上海海洋大学, 2018: 9-34.
    [22]
    潘霞, 徐永健, 宁燕, 等. 温度胁迫对幼体大海马基因转录表达的影响[J]. 核农学报, 2020, 34(7): 1421-1431. doi: 10.11869/j.issn.100-8551.2020.07.1421
    [23]
    WANG L, YU C P, GUO L, et al. In silico comparative transcriptome analysis of two color morphs of the common coral trout (Plectropomus Leopardus)[J]. PLoS One, 2015(12): e0145868.
    [24]
    MEKUCHI M, SAKATA K, YAMAGUCHI T, et al. Trans-omics approaches used to characterise fish nutritional biorhythms in leopard coral grouper (Plectropomus leopardus)[J]. Sci Rep, 2017, 7(1): 9372. doi: 10.1038/s41598-017-09531-4
    [25]
    KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317
    [26]
    PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3): 290-295. doi: 10.1038/nbt.3122
    [27]
    ALTSCHUL S F, MADDEN T L, ZHANG J, et al. Gapped BLAST and PSI BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17): 3389-3402. doi: 10.1093/nar/25.17.3389
    [28]
    EDDY S R. Profile hidden Markov models[J]. Bioinformatics, 1998, 14(9): 755-763. doi: 10.1093/bioinformatics/14.9.755
    [29]
    YOUNG M D, WAKEFIELD M J, SMYTH G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias[J]. Genome Biol, 2014, 11(2): R14.
    [30]
    XIE C, MAO X, HUANG J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39(Suppl 2): W316-W322.
    [31]
    FLOREA L, SONG L, SALZBERG S L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues[J]. F1000 Res, 2013, 2: 188. doi: 10.12688/f1000research.2-188.v1
    [32]
    LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [33]
    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆ CT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [34]
    许亚琴, 吴立新, 陈炜, 等. 水流对鱼类生理生态学影响的研究进展[J]. 现代农业科技, 2020, 4: 199-200. doi: 10.3969/j.issn.1007-5739.2020.07.122
    [35]
    娄宇栋, 冯建, 何娇娇, 等. 流速胁迫对美国红鱼的转录特性研究[J]. 浙江海洋大学学报(自然科学版), 2019, 38(1): 13-22.
    [36]
    许亚琴. 流速对拉氏鱥幼鱼生长、非特异性免疫能力及脂肪酸组成的影响[D]. 大连: 大连海洋大学, 2020: 8-19.
    [37]
    林浩然. 鱼类生长和生长激素分泌活动的调节[J]. 动物学报, 1996, 42(1): 69-79.
    [38]
    FAM B C, JOANNIDES C N, ANDRIKOPOULOS S. The liver: key in regulating appetite and body weight[J]. Adipocyte, 2012, 1(4): 259-264. doi: 10.4161/adip.21448
    [39]
    MUNOZ R, ESTANY J, TOR M, et al. Hepatic lipogenic enzyme expression in pigs is affected by selection for decreased backfat thickness at constant intramuscular fat content[J]. Meat Sci, 2013, 93(3): 746-751. doi: 10.1016/j.meatsci.2012.11.045
    [40]
    董忠典, 黎学友, 廖健, 等. 雌、雄弓背青鳉 (Oryzias curvinotus) 肝脏转录组比较分析[J]. 海洋与湖沼, 2020, 51(5): 1203-1213.
    [41]
    GAHR S A, VALLEJO R L, WEBER G M, et al. Effects of short-term growth hormone treatment on liver and muscle transcriptomes in rainbow trout (Oncorhynchus mykiss)[J]. Physiol Genomics, 2008, 32(3): 380-392. doi: 10.1152/physiolgenomics.00142.2007
    [42]
    刘凯, 谢楠, 冯晓宇, 等. 基于RNA-Seq技术对乌鳢和斑鳢肝脏的转录组分析[J]. 经济动物学报, 2015, 19(4): 213-219.
    [43]
    RISAU W, SARIOLA H, ZERWES H G, et al. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies[J]. Development, 1988, 102(3): 471-478. doi: 10.1242/dev.102.3.471
    [44]
    李建农, 蒋建东. 微管的生物学特性与药物研究[J]. 药学学报, 2003, 38(4): 311-315. doi: 10.3321/j.issn:0513-4870.2003.04.018
    [45]
    BECKWITH E J, YANOVSKY M J. Circadian regulation of gene expression: at the crossroads of transcriptional and post-transcriptional regulatory networks[J]. Curr Opin Genet Dev, 2014, 27: 35-42. doi: 10.1016/j.gde.2014.03.007
    [46]
    李优磊. PPAR信号通路在调控猪皮下脂肪与肌内脂肪差异沉积中的作用及机制研究[D]. 西安: 西北农林科技大学, 2018: 32-40.
    [47]
    杜滢. 氨基酸调控脂肪代谢的机制研究[D]. 北京: 中国科学院大学, 2013: 1-5.
    [48]
    吕怡航. 精氨酸对动物能量代谢的影响[J]. 饲料工业, 2014, 35(24): 40-46.
    [49]
    纪晨光. 胆汁酸对梗阻性黄疸肠黏膜屏障的保护作用及其机制的研究[D]. 石家庄: 河北医科大学, 2015: 1-14.
    [50]
    JIA W, WEI M L, RAJANI C, et al. Targeting the alternative bile acid synthetic pathway for metabolic diseases[J]. Protein Cell, 2021, 12(5): 411-425.
    [51]
    HAO F Q, TIAN M M, ZHANG X B, et al. Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation[J]. PNAS, 2021, 118(22): e2014681118. doi: 10.1073/pnas.2014681118
    [52]
    梁计峻, 林亚秋, 俞雨阳, 等. 山羊CPT1A基因的克隆表达及肌内脂肪含量的相关性分析[J]. 华北农学报, 2019, 34(5): 231-238. doi: 10.7668/hbnxb.201751529
    [53]
    THOMAS Q, VALLIM D A, ELIZABETH J T. Pleiotropic roles of bile acids in metabolism[J]. Cell Metab, 2013, 17(5): 657-669. doi: 10.1016/j.cmet.2013.03.013
    [54]
    DONG X, PARK S, LIN X, et al. Irs1 and Irs2 signaling is essential for glucose homeostastis and systemic growth[J]. J Clin Invest, 2006, 116(1): 101-114. doi: 10.1172/JCI25735
    [55]
    ZHAO Q W, ZHANG Z, RONG W Q, et al. KMT5c modulates adipocyte thermogenesis by regulating Trp53 expression[J]. PNAS, 2020, 117(36): 22413-22422. doi: 10.1073/pnas.1922548117
    [56]
    D'ANDRE H C, PAUL W, SHEN X, et al. Identification and characterization of genes that control fat deposition in chickens[J]. J Anim Sci Biotechno, 2013, 4(1): 43. doi: 10.1186/2049-1891-4-43
  • Related Articles

    [1]ZHONG Zhanyou, DENG Hong, KOU Chunni, CHEN Weitao, WU Zhi, LI Yuefei, XIA Yuguo, LI Huifeng, LI Jie, ZHU Shuli. Research on fish diversity in Xijiang Rare Fish Provincial Nature Reserve based on environmental DNA technology[J]. South China Fisheries Science, 2025, 21(2): 47-58. DOI: 10.12131/20240173
    [2]CHEN Weitao, DUAN Xinbin, GAO Lei, LI Xinhui, YANG Jiping, WANG Dengqiang. Genetic structure analysis of Ochetobius elongatus between Yangtze River and Pearl River using multiple loci[J]. South China Fisheries Science, 2022, 18(6): 19-25. DOI: 10.12131/20220007
    [3]WANG Teng, LIU Yong, QUAN Qiumei, LIN Lin, XIAO Yayuan, LI Chunhou, LI Hong. Community structure characteristics of zooplankton in main freshwater rivers of Jiangmen City, Guangdong Province[J]. South China Fisheries Science, 2021, 17(4): 9-17. DOI: 10.12131/20210019
    [4]XIA Yuguo, LI Yuefei, ZHU Shuli, LI Jie, LI Xinhui. Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of  temperature on CPUE in Pearl River basin[J]. South China Fisheries Science, 2021, 17(1): 10-16. DOI: 10.12131/20200131
    [5]ZHU Shuli, LI Yuefei, WU Zhi, LI Jie, XIA Yuguo, YANG Jiping, LI Xinhui. Research on catchable size and resource protection of Squaliobarbus curriculus in Xijiang River Fengkai section based on length-frequency data[J]. South China Fisheries Science, 2020, 16(4): 1-7. DOI: 10.12131/20190231
    [6]ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene[J]. South China Fisheries Science, 2019, 15(5): 84-91. DOI: 10.12131/20190042
    [7]KUANG Tianxu, SHUAI Fangmin, CHEN Weitao, LI Xinhui. Genetic diversity and population structure of Carassius auratus in Xijiang River[J]. South China Fisheries Science, 2018, 14(5): 29-35. DOI: 10.3969/j.issn.2095-0780.2018.05.004
    [8]YANG Xishu, ZHANG Qun, YÜ Fanyang, LV Jinlei, DI Xiaodan, SHAO Junwei, HUANG Zhenyu, LU Lifeng. MtDNA ND2 sequence-based genetic analysis of Anabas testudineus from South China and Lancang/Mekong River[J]. South China Fisheries Science, 2017, 13(3): 43-50. DOI: 10.3969/j.issn.2095-0780.2017.03.006
    [9]WU Zhi, TAN Xichang, LI Xinhui, TANG Yong. Acoustic monitoring on fish resources in Xijiang section of Pearl River during first closed fishing season[J]. South China Fisheries Science, 2014, 10(3): 24-28. DOI: 10.3969/j.issn.2095-0780.2014.03.004
    [10]ZHU Shuli, LI Xinhui, LI Yuefei, WANG Chao, YANG Jiping, LI Lin. Age and growth of Spualiobarbus curriculus from Zhaoqing Guangdong Section of Xijiang River[J]. South China Fisheries Science, 2013, 9(2): 27-31. DOI: 10.3969/j.issn.2095-0780.2013.02.005
  • Cited by

    Periodical cited type(9)

    1. 邓洪,钟占友,寇春妮,朱书礼,李跃飞,夏雨果,武智,李捷,陈蔚涛. 基于线粒体全基因组揭示斑鳠的种群遗传结构与演化历史. 生物多样性. 2025(01): 97-106 .
    2. 詹华伟,叶树政,陈锭娴,王凯丰,刘兰苑,龚剑,韩崇,李强. 基于线粒体Cytb序列的广东地区大刺鳅群体遗传多样性分析. 湖南农业科学. 2024(03): 1-6 .
    3. 刘童,王英俊,吴莹莹,邹琰,吕芳,吴海一,李建民,宋爱环. 魁蚶3个群体及杂交子代遗传多样性分析. 水产科学. 2024(04): 561-570 .
    4. 邓树庆,蔡杏伟,王韩,符成慧,张清凤,申志新,李高俊,李芳远. 保亭近腹吸鳅遗传多样性及保护建议. 热带生物学报. 2024(04): 419-426 .
    5. 王吉祥,刘凯,王永杰,刘彦斌,刘嘉成,王彩雯,肖伟,连总强,王玉涛. 黄河宁夏段黄河鮈群体的遗传多样性与系统发育分析. 基因组学与应用生物学. 2024(07): 1248-1259 .
    6. 卞玉玲,刘士力,刘一诺,贾永义,李飞,迟美丽,郑建波,程顺,顾志敏. 湖州河川沙塘鳢群体线粒体DNA cyt b基因序列的遗传多样性分析. 水产学杂志. 2023(01): 22-28+35 .
    7. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体nad1基因的大理州亚洲带绦虫遗传多样性分析. 热带医学杂志. 2023(03): 301-304 .
    8. 尹雪宇,陈远腾,庄尔俊,赵俊杰,董玲,李海龙. 基于线粒体12S rRNA基因对大理州亚洲带绦虫遗传多样性的分析. 中国人兽共患病学报. 2023(08): 784-788 .
    9. 范嗣刚,黄皓,王鹏飞,闫路路,赵超,张博,邱丽华. 基于cox1序列的中国6个花鲈野生群体遗传多样性. 广东海洋大学学报. 2022(03): 11-17 .

    Other cited types(6)

Catalog

    Article views (651) PDF downloads (63) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return