SHEN Ye, WANG Xingqiang, CAO Mei, ZHENG Nianhao, CHEN Baiyao, QIN Chuanxin. Transcriptome analysis of Exopalaemon carinicauda under low salinity stress[J]. South China Fisheries Science, 2020, 16(5): 19-32. DOI: 10.12131/20190267
Citation: SHEN Ye, WANG Xingqiang, CAO Mei, ZHENG Nianhao, CHEN Baiyao, QIN Chuanxin. Transcriptome analysis of Exopalaemon carinicauda under low salinity stress[J]. South China Fisheries Science, 2020, 16(5): 19-32. DOI: 10.12131/20190267

Transcriptome analysis of Exopalaemon carinicauda under low salinity stress

More Information
  • Received Date: December 30, 2019
  • Revised Date: April 26, 2020
  • Accepted Date: May 14, 2020
  • Available Online: September 27, 2020
  • Transcriptome sequencing can be used for high-throughput sequencing of species under various environmental conditions. We explored the function and expression of related genes under specific conditions by gene structure analysis and gene function annotation. E. carinicauda samples at freshwater (salinity 0.2) and natural seawater (salinity 31) were sequenced by Illumina platform, and 13.92 Gb high-quality sequencing data was obtained. 111 618 transcripts and 72 734 unigenes were assembled. A total of 22 879 unigenes were annotated, of which 21 931 were compared to the Nr database. 1 492 differentially expressed genes were screened, including 829 up-regulated genes and 663 down-regulated genes, 810 of which were annotated. According to the GO function annotation, enrichment analysis and enrichment analysis of KEGG pathway of differentially expressed gene, we excavated differentially expressed genes of the natural seawater and freshwater environments, which provides technical support for further research on the physiological protection mechanism of E. carinicauda under low salinity stress.

  • [1]
    ZHAO Z Y, YIN Z X, WENG S P, et al. Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridisation[J]. Fish Shellfish Immunol, 2006, 22(5): 520-534.
    [2]
    李新堂, 陈建芳, 张永杰, 等. 低盐度养殖脊尾白虾试验[J]. 齐鲁渔业, 2004, 21(3): 24-25.
    [3]
    孙益奎. 盐田效益池秋冬季养殖脊尾白虾的探讨[J]. 苏盐科技, 2002(4): 12-13.
    [4]
    殷为, 隋丽英. 盐度对凡纳滨对虾、中国明对虾和斑节对虾仔虾生长和存活的影响[J]. 天津科技大学学报, 2012, 27(1): 23-26. doi: 10.3969/j.issn.1672-6510.2012.01.006
    [5]
    李庭古. 盐度对克氏原螯虾的存活、生长、代谢及受精卵孵化的影响[D]. 青岛: 中国海洋大学, 2007: 41-43.
    [6]
    何竺柳. 低盐度胁迫对罗氏沼虾生长和肉质的影响[D]. 舟山: 浙江海洋大学, 2018: 46-48.
    [7]
    张涛, 史会来, 平洪领, 等. 盐度和漂白粉对东方新糠虾的急性胁迫影响[J]. 水产养殖, 2019, 40(1): 18-22. doi: 10.3969/j.issn.1004-2091.2019.01.005
    [8]
    鲁耀鹏, 钱坤, 汪蕾, 等. 养殖盐度对凡纳滨对虾抗氧化酶及免疫相关酶活力的影响[J]. 河北渔业, 2019(12): 1-5. doi: 10.3969/j.issn.1004-6755.2019.12.001
    [9]
    张龙岗, 董学飒, 朱永安, 等. 急性盐度胁迫对克氏原螯虾肝脏抗氧化酶及鳃丝Na+/K+-ATP酶活力的影响[J]. 淡水渔业, 2015, 45(4): 87-91. doi: 10.3969/j.issn.1000-6907.2015.04.015
    [10]
    张敏. 盐度胁迫下南美白对虾雌虾卵巢和肝胰腺中基因表达的响应[C]//浙江省水产学会. 第十二届浙江渔业科技论坛论文摘要集. 湖州: 浙江省科学技术协会, 2017: 29-30.
    [11]
    秦玉凯. 斑节对虾C型凝集素抗菌作用及其在氨氮和盐度胁迫下表达模式的相关研究[C]//中国水产学会. 2018年中国水产学会学术年会论文摘要集. 西安: 中国水产学会, 2018: 39.
    [12]
    李洋, 刘萍, 李健, 等. 脊尾白虾酚氧化酶原基因克隆及表达分析[J]. 海洋与湖沼, 2014, 45(2): 299-306. doi: 10.11693/hyhz20121225001
    [13]
    李洋, 刘萍, 李健, 等. 脊尾白虾丝氨酸蛋白酶抑制剂基因克隆及表达分析[J]. 中国水产科学, 2013, 20(6): 1166-1174.
    [14]
    GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7): 644-652. doi: 10.1038/nbt.1883
    [15]
    SIMS D, SUDBERY I, ILOTT N E, et al. Sequencing depth and coverage: key considerations in genomic analyses[J]. Nat Rev Genet, 2014, 15(2): 121-132. doi: 10.1038/nrg3642
    [16]
    van-DIJK E L, AUGER H, JASZCZYSZYN Y, et al. Ten years of next-generation sequencing technology[J]. Trends Genet, 2014, 30(9): 418-426. doi: 10.1016/j.tig.2014.07.001
    [17]
    王一泽. 饲料中添加抗生素对半滑舌鳎肠道酶组织化学、肠道转录组及菌群结构的影响[D]. 天津: 天津农学院, 2017: 75-87.
    [18]
    KLEPPE L, EDVARDSEN R B, FURMANEK T, et al. Global transcriptome analysis identifies regulated transcripts and pathways activated during oogenesis and early embryogenesis in Atlantic cod[J]. Mol Reprod Dev, 2014, 81(7): 619-635. doi: 10.1002/mrd.22328
    [19]
    MENG X, TIAN X, LIU M, et al. The transcriptomic response to copper exposure by the gill tissue of Japanese scallops (Mizuhopecten yessoensis) using deep-sequencing technology[J]. Fish Shellfish Immunol, 2014, 38(2): 287-293. doi: 10.1016/j.fsi.2014.03.009
    [20]
    龚诗琦. 黄姑鱼微卫星标记的开发与应用[D]. 厦门: 集美大学, 2016: 43-55.
    [21]
    罗志嘉, 李潇, 曾丹, 等. 角鳖RNA-seq转录组分析及生长相关基因筛选[J]. 基因组学与应用生物学, 2019, 38(4): 1480-1487.
    [22]
    王日芳. 脊尾白虾近交系遗传多样性的微卫星分析[D]. 上海: 上海海洋大学, 2016: 41-60.
    [23]
    孙政. 脊尾白虾转录组分析及重要功能基因的发掘[C]//中国海洋湖沼学会, 中国科学院海洋研究所. 中国海洋湖沼学会第十次全国会员代表大会暨学术研讨会论文集. 青岛: 中国海洋湖沼学会, 2012: 1.
    [24]
    冯宁宁. 虾类IMD基因的功能分析及抗病指标的筛选[D]. 青岛: 中国科学院研究生院(海洋研究所), 2013: 64-72.
    [25]
    LI B, DEWEY C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 1-16. doi: 10.1186/1471-2105-12-1
    [26]
    ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140. doi: 10.1093/bioinformatics/btp616
    [27]
    TANG H B, WANG X Y, BOWERS J E, et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps[J]. Genome Res, 2008, 18(12): 1944-1954. doi: 10.1101/gr.080978.108
    [28]
    刘九美. 脊尾白虾回交家系的遗传特性及免疫功能研究[D]. 大连: 大连海洋大学, 2017: 42-58.
    [29]
    连春盎. 干露胁迫对脊尾白虾呼吸代谢相关酶和低氧诱导因子的影响[D]. 上海: 上海海洋大学, 2016: 20-41.
    [30]
    王婧. 脊尾白虾几丁质酶的分离、特征及功能分析[D]. 青岛: 中国科学院研究生院(海洋研究所), 2015: 45-66.
    [31]
    王传聪, 唐修阳, 项杰, 等. 罗氏沼虾转录组SSR标记信息分析[J]. 江苏农业科学, 2018, 46(22): 56-59.
    [32]
    孙健. 日本沼虾抗氨氮胁迫转录组与代谢组分析[D]. 泰安: 山东农业大学, 2017: 36-54.
    [33]
    陈雪峰, 王春琳, 顾志敏, 等. 罗氏沼虾(Macrobrachium rosenbergii)卵巢发育不同时期转录组分析[J]. 海洋与湖沼, 2019, 50(2): 398-408. doi: 10.11693/hyhz20181000239
    [34]
    董丽君, 孟宪红, 孔杰, 等. 基于转录组分析筛选凡纳滨对虾低温胁迫下的差异表达基因[J]. 中国水产科学, 2019, 26(1): 161-171.
    [35]
    陈科. 低盐度下凡纳滨对虾脂肪营养生理研究[D]. 上海: 华东师范大学, 2017: 25-26.
    [36]
    徐猛. 溶酶体生成的调控机制及降解功能研究[D]. 北京: 中国科学院大学, 2016: 15-18.
    [37]
    邹辉, 孙建, 于凡, 等. 镉暴露对BRL 3A细胞溶酶体的影响[J]. 中国兽医科学, 2019, 49(12): 1602-1608.
    [38]
    胡萍萍, 田波, 陈同钰. 葡萄糖神经酰胺合成酶与肿瘤多药耐药[J]. 医学分子生物学杂志, 2007, 4(2): 181-184. doi: 10.3870/j.issn.1672-8009.2007.02.024
    [39]
    曾红, 杨洋, 安输, 等. Ets转录因子的生理作用研究进展[J]. 中国药理学通报, 2017, 33(12): 1645-1650. doi: 10.3969/j.issn.1001-1978.2017.12.005
    [40]
    LIU M, GAO W, van-VELKINBURGH J C, et al. Role of Ets proteins in development, differentiation, and function of T-cell subsets[J]. Med Res Rev, 2016, 36(2): 193-220. doi: 10.1002/med.21361
    [41]
    王瑾, 唐青海, 谷雅静, 等. 猪ELF4基因的克隆、蛋白表达及其多克隆抗体制备[J]. 畜牧兽医学报, 2017, 48(3): 425-435. doi: 10.11843/j.issn.0366-6964.2017.03.005
    [42]
    孙琰, 叶棋浓. Smad4蛋白的研究进展[J]. 生物技术通讯, 2005, 16(3): 299-302. doi: 10.3969/j.issn.1009-0002.2005.03.022
    [43]
    于洋, 史嘉翊, 黄珍, 等. 肝纤维化中TGF-β/Smad信号通路研究进展[J]. 牡丹江医学院学报, 2019, 40(5): 121-123.
    [44]
    农小献, 宾石玉, 蒙涛, 等. 小清蛋白研究进展[J]. 生物技术通讯, 2011, 22(6): 887-891. doi: 10.3969/j.issn.1009-0002.2011.06.033
    [45]
    李小鹏, 王卿惠, 王世伟, 等. 动物Trypsin基因结构、表达及应用研究进展[J]. 高师理科学刊, 2017, 37(10): 41-47. doi: 10.3969/j.issn.1007-9831.2017.10.012
    [46]
    妥丰艳. 胰蛋白酶对刺参体壁胶原超分子结构的降解作用研究[D]. 大连: 大连工业大学, 2016: 28-51.
    [47]
    HIROTA M, OHMURAYA M, BABA H. The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis[J]. J Gastroenterol, 2006, 41(9): 832-836. doi: 10.1007/s00535-006-1874-2
    [48]
    陈天晴. 膳食多酚抑制α-葡糖苷酶活性的构效关系研究[D]. 上海: 上海师范大学, 2018: 6-9.
  • Cited by

    Periodical cited type(3)

    1. 王斌,王昊,刘智健,曹子良,杨丹杰,王芳. 养殖网箱锚泊系统结构设计与性能分析研究进展. 上海海洋大学学报. 2025(01): 176-187 .
    2. 吴皓,周松,刘强,王凯,严俊. 半潜式网箱系泊系统数值计算研究. 船舶力学. 2025(02): 200-208 .
    3. 段若衡,李梦阳,杜金宇. 42m双渔船并列系泊受力可靠性试验分析. 渔业现代化. 2023(02): 85-93 .

    Other cited types(5)

Catalog

    Article views (3181) PDF downloads (99) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return