Citation: | HUANG Xiaolin, LAO Zhihong, YANG Yukai, LI Tao, HUANG Zhong, YU Wei, SHU Hu, LIN Heizhao. Research on tolerance of juvenile Siganus oramin to water temperature, salinity and dissolved oxygen[J]. South China Fisheries Science, 2024, 20(2): 48-55. DOI: 10.12131/20230143 |
In order to study the tolerance of juvenile Siganus oramin to cultural environmental factors and provide basic data for the cultivation, we carried out tolerance tests on juvenile S. oramin with body mass (3.25±0.83) g to environment factors such as water temperature, salinity and dissolved oxygen. Besides, we monitored their oxygen consumption rate and respiratory rate under extreme temperature and salinity conditions by hydrostatic respiration chamber methods. The results show that the suitable temperature for juvenile S. oramin ranged from 23.0 to 28.0 ℃, and the tolerance limit temperature ranged from 12.1 to 32.5 ℃; the suitable salinity ranged from 8.0‰ to 59.0‰, and the tolerance limit salinity ranged from 3.5‰ to 75.0‰; the critical point of asphyxiation under normal conditions was (1.47±0.52) mg·L−1. Both temperature and salinity close to the tolerance limit had significant effects on critical point of asphyxiation, asphyxiation point and ultimate hypoxia tolerance of juvenile S. oramin. Low salinity had the greatest effect on critical point of asphyxiation and asphyxiation point, and low temperature had the greatest effect on ultimate hypoxic tolerance value. In conclusion, juvenile S. oramin have a wide range of tolerance to water temperature and salinity, but the oxygen consumption rate and respiration frequency change significantly when they are out of the suitable range, accompanied by strong stress response; juvenile S. oramin have a high asphyxiation point, and are prone to hypoxia, so it is recommended that the dissolved oxygen should be no less than 6 mg·L−1 during the aquaculture process.
[1] |
马强. 中国海蓝子鱼科Family Siganidae分类和动物地理学特点[D]. 青岛: 中国科学院研究生院 (海洋研究所), 2006: 78-80.
|
[2] |
吕旭宁, 蒋增杰, 方建光, 等. 黄斑蓝子鱼 (Siganus oramin) 对北方养殖网箱网衣附着藻类的生物清除作用[J]. 渔业科学进展, 2017, 38(5): 50-56.
|
[3] |
冯广朋, 章龙珍, 庄平, 等. 海水网箱养殖长鳍蓝子鱼的摄食与生长特性[J]. 海洋渔业, 2008(1): 37-42.
|
[4] |
江飚. 黄斑蓝子鱼对刺激隐核虫感染的抗病生物学特性研究[D]. 广州: 中山大学, 2019: 92-93.
|
[5] |
张邦杰, 梁仁杰, 毛大宁, 等. 黄斑蓝子鱼的池塘驯养及有关生物学初探[J]. 现代渔业信息, 1999, 14(4): 11-16.
|
[6] |
黄小林, 李涛, 林黑着, 等. 网箱养殖黄斑篮子鱼胚胎发育观察[J]. 南方水产科学, 2018, 14(2): 96-101.
|
[7] |
黄小林, 杨育凯, 李涛, 等. 黄斑蓝子鱼仔、稚、幼鱼形态观察与生长研究[J]. 南方水产科学, 2018, 14(5): 88-94.
|
[8] |
赵峰, 庄平, 章龙珍, 等. 篮子鱼繁殖生物学研究进展[J]. 海洋渔业, 2007, 29(4): 365-370.
|
[9] |
SU E X, WU Y J, CHEN P B, et al. Dietary selenium regulates the diversity and stability of microbial communities in stomach and intestine of rabbitfish (Siganus oramin)[J]. Aquaculture, 2023, 563(Pt.2): 738979.
|
[10] |
XU Y, LI J, HAN X F, et al. Enteromorpha prolifera diet drives intestinal microbiome composition in Siganus oramin[J]. Curr Microbiol, 2021, 78: 229-237. doi: 10.1007/s00284-020-02218-6
|
[11] |
游翠红, 李茜, 王树启, 等. 石莼饲料中添加非淀粉多糖酶对黄斑蓝子鱼 (Siganus canaliculatus) 生长以及肌肉营养成分的影响[J]. 渔业科学进展, 2014, 35(5): 46-54.
|
[12] |
HUANG Y X, HAN X, PENG H, et al. Analysis of inhibition mechanisms of Streptococcus agalactiae by Siganus oramin L-amino acid oxidase[J]. Aquac Res, 2022, 53(17): 6205-6218. doi: 10.1111/are.16093
|
[13] |
徐树德, 刘雪兵, 王树启, 等. 不同类型饲料对黄斑篮子鱼幼鱼生长及肌肉蛋白质和脂肪酸组成的影响[J]. 海洋渔业, 2014, 36(6): 529-535.
|
[14] |
杨育凯, 黄小林, 林黑着, 等. 黄斑蓝子鱼幼鱼适宜投喂频率的研究[J]. 动物营养学报, 2020, 32(4): 1809-1816.
|
[15] |
曹晓聪, 黄小林, 孙莘溢, 等. 丁香酚对黄斑蓝子鱼幼鱼麻醉效果的研究[J]. 南方水产科学, 2019, 15(3): 50-56.
|
[16] |
梁前才, 车南青. 长鳍篮子鱼池塘养殖技术[J]. 中国水产, 2018(2): 83-84.
|
[17] |
黄小林, 李文俊, 林黑着, 等. 基于线粒体DNA D-loop序列的黄斑蓝子鱼群体遗传多样性分析[J]. 热带海洋学报, 2018, 37(4): 45-51.
|
[18] |
章龙珍, 杨金海, 刘鉴毅, 等. 温度、盐度、 pH和麻醉剂对长鳍蓝子鱼幼鱼耗氧率的影响[J]. 生态学杂志, 2009, 28(8): 1494-1498.
|
[19] |
滕爽爽, 宋呈锴, 林兴管, 等. 盐度变化对黄斑蓝子鱼存活率、耗氧率和排氨率的影响[J]. 水产养殖, 2018, 39(10): 42-46.
|
[20] |
龙华. 温度对鱼类生存的影响[J]. 中山大学学报 (自然科学版), 2005(S1): 254-257.
|
[21] |
冉凤霞, 金文杰, 黄屾, 等. 盐度变化对鱼类影响的研究进展[J]. 西北农林科技大学学报 (自然科学版), 2020, 48(8): 10-18.
|
[22] |
徐贺, 陈秀梅, 王桂芹, 等. 低氧胁迫在水产养殖中的研究进展[J]. 饲料工业, 2016, 37(2): 33-37.
|
[23] |
王贵宁, 李兵, 罗蕾, 等. 温度及盐度对卵形鲳鲹仔鱼存活和发育的影响[J]. 上海海洋大学学报, 2011, 20(6): 831-837.
|
[24] |
林国文. 珍珠龙胆石斑鱼对水温、盐度和溶解氧的耐受研究[J]. 水产养殖, 2020, 41(9): 29-32.
|
[25] |
曾荣林, 谢仰杰, 王志勇, 等. 大黄鱼幼鱼对低盐度的耐受性研究[J]. 集美大学学报 (自然科学版), 2013, 18(3): 167-171.
|
[26] |
王妤, 宋志明, 刘鉴毅, 等. 点篮子鱼幼鱼的热耐受特征[J]. 海洋渔业, 2015, 37(3): 253-258.
|
[27] |
王云峰, 朱鑫华. 盐度对鱼类生态生理学特征的影响[J]. 海洋科学集刊, 2002(44): 151-158.
|
[28] |
章龙珍, 罗集光, 赵峰, 等. 盐度对点蓝子鱼血清渗透压、离子含量及鳃丝Na+/K+-ATP酶活力的影响[J]. 海洋渔业, 2015, 37(5): 449-456.
|
[29] |
郑春波, 王海涛, 王浩, 等. 利用温泉水低盐度驯养及越冬大规格点蓝子鱼苗种试验[J]. 水产养殖, 2017, 38(11): 6-9.
|
[30] |
宋超, 章龙珍, 刘鉴毅, 等. 池塘低盐养殖点蓝子鱼肌肉营养成分的分析与评价[J]. 海洋渔业, 2012, 34(4): 444-450.
|
[31] |
谢帝芝, 徐树德, 陈芳, 等. 黄斑蓝子鱼LC-PUFA合成代谢与渗透压调节的关系研究[J]. 中国水产科学, 2015, 22(5): 950-959.
|
[32] |
王嘉伟. 大菱鲆低氧耐受能力及生理指标变化研究[D]. 上海: 上海海洋大学, 2021: 3-5.
|
[33] |
宋萍. 溶解氧及其对水产养殖的意义(上)[J]. 科学养鱼, 2013(1): 90.
|
[34] |
张学舒, 王英. 大黄鱼鱼苗耗氧率和窒息点的研究[J]. 经济动物学报, 2007(3): 148-152, 158.
|
[35] |
杨祯, 杨旭, 高铭鸿, 等. 温度对黄带拟鲹耗氧率、排氨率及窒息点的影响[J]. 河北渔业, 2021(7): 1-4, 28.
|
[36] |
蔡磊, 白俊杰, 李胜杰, 等. 大口黑鲈幼鱼低温耐受、耗氧率和窒息点研究[J]. 上海海洋大学学报, 2012, 21(6): 971-975.
|
[37] |
杨婧曦. 赤点石斑鱼苗种耗氧率与窒息点的初步研究[J]. 海洋湖沼通报, 2021, 43(3): 92-97.
|
[38] |
张善发, 董宏标, 王茜, 等. 温度对驼背鲈幼鱼生长、耗氧和热耐受性的影响[J]. 大连海洋大学学报, 2021, 36(1): 74-79.
|
[39] |
蒋飞, 徐嘉波, 施永海. 养殖水温对金钱鱼幼鱼耗氧率、排氨率和窒息点的影响[J]. 西北农林科技大学学报 (自然科学版), 2022, 50(1): 36-42, 51.
|
[40] |
于燕光, 逯云召, 薄其康, 等. 不同温度对大泷六线鱼幼鱼耗氧率和窒息点的影响[J]. 河北渔业, 2020(10): 20-23.
|
[41] |
陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹鳃器官的影响[J]. 南方水产科学, 2017, 13(1): 124-130.
|
[42] |
陈婉情, 吴洪喜, 吴亮, 等. 5种海水养殖鱼类幼鱼的耗氧率及窒息点[J]. 海洋学研究, 2015, 33(2): 76-81.
|
[43] |
张涛, 平洪领, 史会来, 等. 不同盐度梯度和规格体重对横带髭鲷 (Hapalogenys mucronatus) 幼鱼耗氧率 (RO) 及排氨率 (RN) 的影响[J]. 海洋与湖沼, 2023, 54(2): 566-572.
|
[44] |
沈旭明, 赵清良. 温度、溶解氧对暗纹东方鲀幼鱼呼吸频率的影响[J]. 生态学杂志, 2001(4): 13-15.
|
[45] |
陈松波, 范兆廷, 陈伟兴. 不同温度下鲤鱼呼吸频率与耗氧率的关系[J]. 东北农业大学学报, 2006(3): 352-356.
|
[46] |
SZYPER J P, LUTNESKY M M F. 温度和含盐量对鲯鳅幼鱼呼吸频率和行为的影响[J]. 江西水产科技, 1999(4): 37-42.
|
[47] |
陈小江, 左华丽, 李伟, 等. 四川华吸鳅对盐度的耐受性研究[J]. 南方水产科学, 2021, 17(1): 76-81.
|
[48] |
王波, 谢琳萍, 傅明珠, 等. 温度、盐度与 pH对星斑川鲽呼吸频率的影响[J]. 河北渔业, 2009(10): 9-10, 49.
|
[1] | LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238 |
[2] | ZHENG Jichang, YAN Han, JIANG Yan, XU Yongjiang, CUI Aijun, MA Bin. Effects of flow velocity on swimming behavior of Lateolabrax maculatus juvenile with different population sizes[J]. South China Fisheries Science. DOI: 10.12131/20240260 |
[3] | ZHANG Fan, CUI Mingchao, LIU Huang, YAO Chunjing, ZHANG Chen. Experimental study of flow field characteristics in tanks with different diameter-to-depth ratios[J]. South China Fisheries Science. DOI: 10.12131/20240290 |
[4] | QIAN Cheng, ZHANG Jiapeng, TU Xueying, LIU Huang, QIAO Gan, LIU Shijing. Turbot fish egg recognition and counting method based on CBAM-UNet[J]. South China Fisheries Science, 2024, 20(6): 132-144. DOI: 10.12131/20240123 |
[5] | ZHENG Haohao, YANG Xiaoming, ZHU Jiangfeng. Environmental impact mechanism of skipjack tuna fishery in Western and Central Pacific Ocean based on Multi-scale Geographical Weighted Regression Model (MGWR)[J]. South China Fisheries Science, 2023, 19(5): 1-10. DOI: 10.12131/20230014 |
[6] | CAI Yancong, SUN Mingshuai, XU Youwei, CHEN Zuozhi. Spatial heterogeneity of relationship between distribution of Uroteuthis chinensis and marine environment in offshore waters of northern South China Sea[J]. South China Fisheries Science, 2023, 19(3): 1-10. DOI: 10.12131/20220288 |
[7] | QIAN Zhenjia, XU Jincheng, ZHANG Chenglin, YU Youbin, LIU Huang. Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus[J]. South China Fisheries Science, 2023, 19(2): 89-97. DOI: 10.12131/20220153 |
[8] | ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044 |
[9] | GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125 |
[10] | HAN Peiwu, LI Nan, FANG Zhou, CHEN Xinjun. Heterogeneity of mantle length-body mass relationship in different Ommastrephes bartramii populations based on linear mixed model[J]. South China Fisheries Science, 2020, 16(6): 12-20. DOI: 10.12131/20200117 |