Citation: | ZHENG Haohao, YANG Xiaoming, ZHU Jiangfeng. Environmental impact mechanism of skipjack tuna fishery in Western and Central Pacific Ocean based on Multi-scale Geographical Weighted Regression Model (MGWR)[J]. South China Fisheries Science, 2023, 19(5): 1-10. DOI: 10.12131/20230014 |
Katsuwonus pelamis is an important resource for tuna purse seine fishing in the Western and Central Pacific Ocean, and its resource distribution is significantly affected by environment. In order to explore the characteristics of spatial heterogeneity of environmental impact on tuna catch rate, we used the 1°×1° fishery and marine environmental data of the Western and Central Pacific Ocean tuna purse-seine published by the Western and Central Pacific Fisheries Commission (WCPFC) from 2005 to 2019, and investigated the standardized environmental factors and catch rates by using Multi-scale Geographically Weighted Regression (MGWR) method. The results show that: 1) Compared with the traditional Generalized Additive Model (GAM), the Geographically Weighted Regression (GWR) and MGWR with spatial heterogeneity of environmental impacts improved the fit performance significantly. 2) Significant spatial non-stationarity was found for each environmental factor on the distribution of tuna resources. The degree of spatial heterogeneity (The magnitude of the coefficient of variation) of each environmental factor on the distribution of tuna catch rate followed a descending order of Sea water X velocity at 55 m depth (U55) > Sea surface temperature (SST) > Net primary productivity (NPP) >Sea water salinity at 100 m depth (S100) > Sea water Y velocity at 55 m depth (V55). 3) The effects of the environmental factors were found to have significant scale effects. 4) Overall, the positive effects of S100, NPP, SST, V55 and U55 on the catch rate of tuna were 73.5%, 64.8%, 66.8%, 80.8% and 32.3%, respectively. The effects of S100, NPP and SST on the spatial distribution of bonito catch rate were similar, specifically in terms of east-west differences, with positive effects mainly west of 170°E and negative effects east of 170°E. U55 was the main factor with negative effects.
[1] |
陈新军, 郑波. 中西太平洋金枪鱼围网渔业鲣鱼资源的时空分布[J]. 海洋学研究, 2007(2): 13-22. doi: 10.3969/j.issn.1001-909X.2007.02.002
|
[2] |
WILLIAMS P, RUAIA T. Overview of tuna fisheries in the western and central Pacific Ocean, including economic conditions–2019[C]//16th WCPFC Scientific Committee Meeting (SC16). Pohnpei State, Federated States of Micronesia: WCPFC, 2020: 7.
|
[3] |
DUERI S, BOPP L, MAURY O. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution[J]. Global Change Biol, 2014, 20(3): 742-753. doi: 10.1111/gcb.12460
|
[4] |
杨晓明, 戴小杰, 田思泉, 等. 中西太平洋金枪鱼围网渔场变动的预报分析[J]. 中国水产科学, 2016, 23(6): 1417-1425.
|
[5] |
王学昉, 许柳雄, 周成, 等. 中西太平洋金枪鱼围网鲣鱼自由鱼群捕获成功率与温跃层特性的关系[J]. 上海海洋大学学报, 2013, 22(5): 763-769.
|
[6] |
魏广恩. 北太平洋柔鱼渔场的时空分析与资源丰度的预测[D]. 上海: 上海海洋大学, 2018: 77
|
[7] |
陈洋洋, 陈新军, 郭立新, 等. 基于BP神经网络的中西太平洋鲣鱼渔场预报模型构建与比较[J]. 广东海洋大学学报, 2017, 37(6): 65-73.
|
[8] |
ROBINSON M, SEI-ICHI S. Ensemble modelling of skipjack tuna (Katsuwonus pelamis) habitats in the Western North Pacific using satellite remotely sensed data: a comparative analysis using Machine-Learning Models[J]. Remote Sens-Basel, 2020, 12(16): 2591. doi: 10.3390/rs12162591
|
[9] |
VENABLES W N, DICHMONT C M. GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research[J]. Fish Res, 2004, 70(2/3): 319-337.
|
[10] |
杨彩莉, 杨晓明, 朱江峰. 不同类型厄尔尼诺事件中环境因子对中西太平洋金枪鱼围网鲣分布响应[J]. 南方水产科学, 2021, 17(3): 8-18.
|
[11] |
DUQUE-LAZO J, GILS H V, GROEN T A, et al. Transfer ability of species distribution models: the case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia[J]. Ecol Model, 2016, 320: 62-70. doi: 10.1016/j.ecolmodel.2015.09.019
|
[12] |
姜珊, 杨晓明, 朱江峰. 中西太平洋金枪鱼围网鲣渔获率与海洋环境关系的时空异质性[J]. 中国水产科学, 2022, 29(5): 744-754.
|
[13] |
FENG Y J, LIU Y, CHEN X J. Modeling monthly spatial distribution of Ommastrephes bartramii CPUE in the northwest Pacific and its spatially nonstationary relationships with the marine environment[J]. J Ocean U China, 2018, 17(3): 647-658. doi: 10.1007/s11802-018-3495-9
|
[14] |
沈体雁, 于瀚辰, 周麟, 等. 北京市二手住宅价格影响机制: 基于多尺度地理加权回归模型(MGWR)的研究[J]. 经济地理, 2020, 40(3): 75-83.
|
[15] |
FOTHERINGHAM A S, YANG W, KANG W. Multiscale geographically weighted regression (MGWR)[J]. Ann Am Assoc Geogr, 2017, 107(6): 1247-1265.
|
[16] |
YU H, FOTHERINGHAM A S , LI Z, et al. On the measurement of bias in geographically weighted regression models[J]. Spat Stat-Neth, 2020: 100453.
|
[17] |
李斌, 邢汉发, 刘烨菲. 基于MGWR模型的城市景观与热环境关系分析[J]. 西安理工大学学报, 2021, 37(4): 517-525.
|
[18] |
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456.
|
[19] |
BUI D T, LOFMAN O, REVHAUG I, et al. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression[J]. Nat Hazards, 2011, 59(3): 1413-1444. doi: 10.1007/s11069-011-9844-2
|
[20] |
HASTIE T J, TIBSHIRANI R J. Generalized Additive Models[M]. London: Chapman and Hall, 1990: 17.
|
[21] |
TSENG C T, SUN C L, YEH S Z, et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multisatellite data[J]. Int J Remote Sens, 2010, 31(17/18): 4543-4558.
|
[22] |
SONG X L, MI N, MI W B, et al. Spatial non-stationary characteristics between grass yield and its influencing factors in the Ningxia temperate grasslands based on a mixed geographically weighted regression model[J]. J Geogr Sci, 2022, 32(6): 1076-1102. doi: 10.1007/s11442-022-1986-5
|
[23] |
祝新明, 宋小宁, 冷佩, 等. 多尺度地理加权回归的地表温度降尺度研究[J]. 遥感学报, 2021, 25(8): 1749-1766.
|
[24] |
JONES S, SILAS E G. Synopsis of biological data on skipjack Katsuwonus pelamis (Linnaeus) 1758 (Indian Ocean): FAO Fisheries Biology Synopsis No. 64 Species Synopsis No. 21[R]. Rome: FAO, 1963: 663-694.
|
[25] |
DRUON J N, CHASSOT E, MURUA H, et al. Skipjack tuna availability for purse seine fisheries is driven by suitable feeding habitat dynamics in the Atlantic and Indian Oceans[J]. Front Mar Sci, 2017, 4: 315. doi: 10.3389/fmars.2017.00315
|
[26] |
周甦芳, 沈建华, 樊伟. ENSO现象对中西太平洋鲣鱼围网渔场的影响分析[J]. 海洋渔业, 2004(3): 167-172.
|
[27] |
LEHODEY P M, BERTIGNAC M, HAMPTON J, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature 1997, 389: 715-718.
|
[28] |
MEEHL G A. Characteristics of surface current flow inferred from a Global Ocean Current Data Set[J]. J Phys Oceanogr, 1982, 12(6): 538-555. doi: 10.1175/1520-0485(1982)012<0538:COSCFI>2.0.CO;2
|
[29] |
郭爱, 余为, 陈新军, 等. 中国近海鲐鱼资源时空分布与海洋净初级生产力的关系研究[J]. 海洋学报, 2018, 40(8): 42-52.
|
[30] |
黄易德. 中西太平洋正鲣资源时空分布特性之研究[D]. 基隆: 台湾海洋大学, 2002: 83.
|
[31] |
SUGIMOTO T, KIMURAA S, TADOKOROB K. Impact of El Niño eventsand climate regime shift on living resources in the western North Pacific[J]. Prog Oceanogr, 2001, 49: 113-127. doi: 10.1016/S0079-6611(01)00018-0
|
[32] |
杨晓明, 戴小杰, 田思泉, 等. 中西太平洋鲣鱼围网渔业资源的热点分析和空间异质性[J]. 生态学报, 2014, 34(13): 3771-3778.
|
[33] |
杨晓明, 戴小杰, 王学昉, 等. 基于点格局的中西太平洋金枪鱼围网中鲣的空间格局特征[J]. 中国水产科学, 2017, 24(3): 633-639.
|
[34] |
杨胜龙, 周甦芳, 周为峰, 等. 基于Argo数据的中西太平洋鲣渔获量与水温、表层盐度关系的初步研究[J]. 大连水产学院学报, 2010, 25(1): 34-40.
|
[35] |
叶泰豪, 冯波, 颜云榕, 等. 中西太平洋鲣渔场与温盐垂直结构关系的研究[J]. 海洋湖沼通报, 2012(1): 49-55.
|
[36] |
PICAUT J, IOUALALEN M, MENKES C, et al. Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO[J]. Science, 1996, 274(5292): 1486-1489. doi: 10.1126/science.274.5292.1486
|
[37] |
ZHANG F, ZHANG R H. Interannually varying salinity effects on ENSO in the tropical Pacific: a diagnostic analysis from Argo[J]. Ocean Dyn, 2015, 65(5): 691-705. doi: 10.1007/s10236-015-0829-7
|
[38] |
唐未, 王学昉, 吴峰, 等. 基于最大熵模型模拟西印度洋剑鱼栖息地的时空分布[J]. 海洋学报, 2022, 44(10): 100-108.
|
[39] |
张小龙, 付东洋, 刘大召, 等. 基于EOF分析中西太平洋金枪鱼围网渔场的海洋环境[J]. 海洋学研究, 2019, 37(2): 81-94.
|
[40] |
唐浩, 许柳雄, 陈新军, 等. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响[J]. 海洋环境科学, 2013, 32(4): 518-522.
|
[1] | LUO Jing, LI Min, ZHANG Ying, LIU Yan, GUAN Zhiqiang. Effect of different drying methods on volatile components of tilapia fillets analyzed by electronic nose combined with GC-MS[J]. South China Fisheries Science, 2022, 18(1): 135-143. DOI: 10.12131/20210098 |
[2] | LI Laihao, SUN Bolun, ZHAO Donghao. Research progress in detection and preparation methods for tetrodotoxin[J]. South China Fisheries Science, 2018, 14(3): 126-132. DOI: 10.3969/j.issn.2095-0780.2018.03.016 |
[3] | CHEN Kang, DAI Zhiyuan, SHEN Qing, HUANG Yaowen. Extraction of phospholipid from Euphausia superba by response surface method and determination of phospholipid molecular species[J]. South China Fisheries Science, 2017, 13(3): 104-112. DOI: 10.3969/j.issn.2095-0780.2017.03.014 |
[4] | WANG Zhengbin, LIU Yongtao, AI Xiaohui, YANG Tao, LIU Tianqiang. Microbiological inhibition method for determination of colistin residues in muscles of aquatic products[J]. South China Fisheries Science, 2016, 12(3): 98-105. DOI: 10.3969/j.issn.2095-0780.2016.03.013 |
[5] | WEI Ya, ZHAO Yongqiang, HAO Shuxian, CEN Jianwei, HUANG Hui, LI Laihao. Comparison of carbazole method and phloroglucinol method for chondroitin sulfate determination[J]. South China Fisheries Science, 2012, 8(6): 65-71. DOI: 10.3969/j.issn.2095-0780.2012.06.010 |
[6] | ZHU Shichao, QIAN Zhuozhen, WU Chengye. Determination of 7 macrolide antibiotic residues in aquatic products by HPLC-MS/MS[J]. South China Fisheries Science, 2012, 8(1): 54-60. DOI: 10.3969/j.issn.2095-0780.2012.01.009 |
[7] | HUANG Chunli, HUANG He, LIU Wenxia, GAO Ping, HUANG Guofang, LI Zhiqing, CHENG Hong, LUO Lin. Research progress on residual toxicity and detection methods of melamine[J]. South China Fisheries Science, 2011, 7(3): 76-80. DOI: 10.3969/j.issn.2095-0780.2011.03.014 |
[8] | CEN Jianwei, LI Laihao, YANG Xianqing, WEI Ya, ZHAO Suhui, ZHOU Wanjun, SHI Hong. Comparison of four determination methods of Alum content in jellyfish product[J]. South China Fisheries Science, 2010, 6(3): 7-11. DOI: 10.3969/j.issn.1673-2227.2010.03.002 |
[9] | YANG Qibin, LI Xiaolan, SUN Miaomiao, WEN Weigeng, HUANG Jianhua. Methods of testing vitality of postlarvae of Penaeus monodon[J]. South China Fisheries Science, 2010, 6(1): 12-18. DOI: 10.3969/j.issn.1673-2227.2010.01.003 |
[10] | MA Haixia, LI Laihao, YANG Xianqing, WU Yanyan, ZHOU Wanjun, DIAO Shiqiang, CHEN Shengjun. Spectrophotometric determination of formaldehyde in aquatic products[J]. South China Fisheries Science, 2008, 4(6): 26-32. |