Citation: | LUO Yingying, HUANG Hui, LI Laihao, HAO Shuxian, CHEN Shengjun, WEI Ya, CEN Jianwei, XIANG Huan. Quality improvement and mechanism analysis of non-rinsing tilapia surimi gel[J]. South China Fisheries Science, 2025, 21(2): 164-173. DOI: 10.12131/20240238 |
Non-rinsing surimi has better flavor due to its higher protein and fat content, but it has insufficient gel properties. We investigated the effects of starch, hydrophilic colloid and dietary fiber on the texture characteristics, rheological properties, color, water holding capacity and cooking loss rate of tilapia non-rinsing surimi. Besides, we analyzed the mechanism of gel quality enhancement of non-rinsing surimi gel from the aspects of water distribution, intermolecular force and protein structure. The results show that compared with the control group, the starch, hydrophilic colloid, dietary fiber and other substances could improve the texture characteristics and gel strength of non-rinsing surimi. The water holding capacity of surimi increased and the cooking loss rate decreased. Under the influence of starch, hydrophilic colloid and dietary fiber, the free water in non-rinsing surimi was converted into immobilized water and bound water, the hydrophobic interaction between protein molecules enhanced, and the α-helix was transformed into ordered β-sheet. The formation of dense and stable surimi gel network structure could significantly improve the gel quality of non-rinsing surimi. Especially, the optimized compound addition (1.5% hydroxypropyl distarch phosphate, 0.3% sodium polyacrylate, 12% corn starch and 1.5% seaweed dietary fiber) had the most significant effect on surimi gel.
[1] |
何晓萌, 黄卉, 李来好, 等. 罗非鱼与海水鱼制备混合鱼糜的凝胶特性研究[J]. 食品工业科技, 2018, 39(2): 5-9.
|
[2] |
BUDA U, PRIYADARSHINI M B, MAJUMDAR R K, et al. Quality characteristics of fortified silver carp surimi with soluble dietary fiber: effect of apple pectin and konjac glucomannan[J]. Int J Biol Macromol, 2021, 175: 123-130. doi: 10.1016/j.ijbiomac.2021.01.191
|
[3] |
刘慧. 食物多酚对未漂洗鱼糜脂质氧化的影响[D]. 长沙: 中南林业科技大学, 2023: 4-77.
|
[4] |
黄晓冰, 洪鹏志, 周春霞, 等. 不同原淀粉对金线鱼鱼糜凝胶品质的影响及其分子机制[J]. 广东海洋大学学报, 2024, 44(1): 133-141. doi: 10.3969/j.issn.1673-9159.2024.01.016
|
[5] |
王睿纯, 李义, 林松毅, 等. 不同类型变性淀粉对鲅鱼鱼糜凝胶特性的影响[J]. 食品工业科技, 2023, 44(20): 85-92.
|
[6] |
张慧敏, 刘平稳. 不同变性淀粉对鱼糜凝胶特性的影响[J]. 粮食与食品工业, 2024, 31(1): 30-34. doi: 10.3969/j.issn.1672-5026.2024.01.008
|
[7] |
LAN H J, CHEN L, WANG Y T, et al. Effect of к-carrageenan on saltiness perception and texture characteristic related to salt release in low-salt surimi[J]. Int J Biol Macromol, 2023, 253: 126852. doi: 10.1016/j.ijbiomac.2023.126852
|
[8] |
陈静静, 张鹏辉, 杨晨昱, 等. 四种胶体在鱼肉丸中的应用性研究[J]. 湖北农业科学, 2023, 62(11): 149-154.
|
[9] |
CHEN B, CAI Y J, LIU T X, et al. Formation and performance of high acyl gellan hydrogel affected by the addition of physical-chemical treated insoluble soybean fiber[J]. Food Hydrocoll, 2020, 101: 105526. doi: 10.1016/j.foodhyd.2019.105526
|
[10] |
NIE J G, XUE C, XIONG S B, et al. Comparative analysis of soluble and insoluble dietary fiber on improving the gelation performance and fishy odors of silver carp surimi[J]. Int J Biol Macromol, 2024, 262: 129938. doi: 10.1016/j.ijbiomac.2024.129938
|
[11] |
赵跃, 李春生, 王悦齐, 等. 罗非鱼鱼糜自然发酵过程中微生物群落结构对其品质形成的影响[J]. 食品科学, 2021, 42(18): 119-126. doi: 10.7506/spkx1002-6630-20200915-194
|
[12] |
戚勃, 杨少玲, 王悦齐, 等. 羧甲基琼胶对罗非鱼鱼糜凝胶性能的影响[J]. 南方水产科学, 2022, 18(2): 83-89. doi: 10.12131/20210311
|
[13] |
刘璐, 洪鹏志, 周春霞, 等. 不同种类淀粉对罗非鱼鱼糜凝胶品质的影响[J]. 食品科学, 2023, 44(6): 82-89. doi: 10.7506/spkx1002-6630-20220522-279
|
[14] |
韦丽娜, 李来好, 郝淑贤, 等. 渗透处理对冷冻干燥罗非鱼肉品质和肌原纤维蛋白的影响[J]. 南方水产科学, 2023, 19(2): 133-141. doi: 10.12131/20220256
|
[15] |
PAN Y M, SUN Q X, LIU Y, er al. Optimization of 3D printing formulation of shrimp surimi based on response surface method[J]. LWT, 2024, 199: 116126. doi: 10.1016/j.lwt.2024.116126
|
[16] |
SUN X S, LYU Y Y, JIA H, et al. Improvement of flavor and gel properties of silver carp surimi product by Litsea cubeba oil high internal phase emulsions[J]. LWT, 2024, 192: 115745. doi: 10.1016/j.lwt.2024.115745
|
[17] |
CHEN H Z, ZHANG M, YANG C H. Comparative analysis of 3D printability and rheological properties of surimi gels via LF-NMR and dielectric characteristics[J]. J Food Eng, 2021, 292: 110278. doi: 10.1016/j.jfoodeng.2020.110278
|
[18] |
ZHANG H M, XIONG Y T, BAKRY A M, et al. Effect of yeast β-glucan on gel properties, spatial structure and sensory characteristics of silver carp surimi[J]. Food Hydrocoll, 2019, 88: 256-264. doi: 10.1016/j.foodhyd.2018.10.010
|
[19] |
CEN K Y, YU X, GAO C C, et al. Effects of quinoa protein Pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel[J]. Food Chem, 2022, 394: 133456. doi: 10.1016/j.foodchem.2022.133456
|
[20] |
XIA S G, XUE Y, XUE C H, et al. Structural and rheological properties of meat analogues from Haematococcus pluvialis residue-pea protein by high moisture extrusion[J]. LWT, 2022, 154: 112756.
|
[21] |
MI H B, YU W S, LI Y, et al. Effect of modified cellulose-based emulsion on gel properties and protein conformation of Nemipterus virgatus surimi[J]. Food Chem, 2024, 455: 139841. doi: 10.1016/j.foodchem.2024.139841
|
[22] |
JIANG X, LIU J Y, XIAO N Y, et al. Characterization of the textural properties of thermally induced starch-surimi gels: morphological and structural observation[J]. Food Biosci, 2024, 58: 103675. doi: 10.1016/j.fbio.2024.103675
|
[23] |
MI H B, LI Y, WANG C, et al. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi[J]. Food Hydrocoll, 2021, 112: 106290. doi: 10.1016/j.foodhyd.2020.106290
|
[24] |
ZHANG C, CHEN L, LU M X, et al. Effect of cellulose on gel properties of heat-induced low-salt surimi gels: physicochemical characteristics, water distribution and microstructure[J]. Food Chem: X, 2023, 19: 100820. doi: 10.1016/j.fochx.2023.100820
|
[25] |
JIANG Q X, CHEN N, GAO P, et al. Influence of L-arginine addition on the gel properties of reduced-salt white leg shrimp (Litopenaeus vannamei) surimi gel treated with microbial transglutaminase[J]. LWT, 2023, 173: 114310. doi: 10.1016/j.lwt.2022.114310
|
[26] |
YIN T, YAO R, ULLAH I, et al. Effects of nanosized okara dietary fiber on gelation properties of silver carp surimi[J]. LWT, 2019, 111: 111-116. doi: 10.1016/j.lwt.2019.05.023
|
[27] |
PEI Z S, WANG H B, XIA G H, et al. Emulsion gel stabilized by tilapia myofibrillar protein: application in lipid-enhanced surimi preparation[J]. Food Chem, 2023, 403: 134424. doi: 10.1016/j.foodchem.2022.134424
|
[28] |
ZHANG S, MEENU M, XIAO T, et al. Insight into the mechanism of pressure shift freezing on water mobility, microstructure, and rheological properties of grass carp surimi gel[J]. Innov Food Sci Emerg, 2024, 91: 103528. doi: 10.1016/j.ifset.2023.103528
|
[29] |
ZHU S C, WANG Y Y, DING Y C, et al. Improved texture properties and toughening mechanisms of surimi gels by double network strategies[J]. Food Hydrocoll, 2024, 152: 109900. doi: 10.1016/j.foodhyd.2024.109900
|
[30] |
FANG Q, SHI L F, REN Z Y, et al. Effects of emulsified lard and TGase on gel properties of threadfin bream (Nemipterus virgatus) surimi[J]. LWT, 2021, 146: 111513. doi: 10.1016/j.lwt.2021.111513
|
[31] |
ZHOU X X, CHEN T, LIN H H, et al. Physicochemical properties and microstructure of surimi treated with egg white modified by tea polyphenols[J]. Food Hydrocoll, 2019, 90: 82-89. doi: 10.1016/j.foodhyd.2018.07.031
|
[32] |
MONTO A R, YUAN L, XIONG Z Y, et al. Effect of α-tocopherol, soybean oil, and glyceryl monostearate oleogel on gel properties and the in-vitro digestion of low-salt silver carp (Hypophthalmichthys molitrix) surimi[J]. Food Chem, 2024, 460: 140588. doi: 10.1016/j.foodchem.2024.140588
|
[33] |
KONG W J, ZHANG T, FENG D D, et al. Effects of modified starches on the gel properties of Alaska pollock surimi subjected to different temperature treatments[J]. Food Hydrocoll, 2016, 56: 20-28. doi: 10.1016/j.foodhyd.2015.11.023
|
[34] |
TAN Z F, YANG X Q, WANG Z M, et al. Konjac glucomannan-assisted fabrication of stable emulsion-based oleogels constructed with pea protein isolate and its application in surimi gels[J]. Food Chem, 2024, 443: 138538. doi: 10.1016/j.foodchem.2024.138538
|
[35] |
YI X Z, PEI Z S, XIA G H, et al. Interaction between liposome and myofibrillar protein in surimi: effect on gel structure and digestive characteristics[J]. Int J Biol Macromol, 2023, 253: 126731. doi: 10.1016/j.ijbiomac.2023.126731
|
[36] |
ZHONG Y L, CAI Q Y, HUANG Q R, et al. Application of LF-NMR to characterize the roles of different emulsifiers in 3D printed emulsions[J]. Food Hydrocoll, 2022, 133: 107993. doi: 10.1016/j.foodhyd.2022.107993
|
[37] |
ZHAO X, CHEN L, WONGMANEEPRATIP W, et al. Effect of vacuum impregnated fish gelatin and grape seed extract on moisture state, microbiota composition, and quality of chilled seabass fillets[J]. Food Chem, 2021, 354: 129581. doi: 10.1016/j.foodchem.2021.129581
|
[38] |
ZHAO Y D, WEI K, CHEN J L, et al. Enhancement of myofibrillar protein gelation by plant proteins for improved surimi gel characteristics: mechanisms and performance[J]. LWT, 2024, 198: 116045. doi: 10.1016/j.lwt.2024.116045
|
[39] |
LIU Y, SUN Q X, WEI S, et al. LF-NMR as a tool for predicting the 3D printability of surimi-starch systems[J]. Food Chem, 2022, 374: 131727. doi: 10.1016/j.foodchem.2021.131727
|
[40] |
HE N, CHEN X R, LI L, et al. κ-Carrageenan masking bitterness perception in surimi gels containing potassium chloride-based salt substitutes: gel properties, oral processing, and sensory evaluation[J]. Food Chem, 2024, 456: 139859. doi: 10.1016/j.foodchem.2024.139859
|
[41] |
ZHANG X H, XIE W X, LIANG Q Q, et al. High inner phase emulsion of fish oil stabilized with rutin-grass carp (Ctenopharyngodon idella) myofibrillar protein: application as a fat substitute in surimi gel[J]. Food Hydrocoll, 2023, 145: 109115. doi: 10.1016/j.foodhyd.2023.109115
|
[42] |
LIU X J, CHI J H, LIN Y W, et al. Mechanistic insights into combined effects of continuous microwave heating and tremella powder addition on physiochemical properties of Nemipterus virgatus surimi gel[J]. Food Chem, 2024, 460: 140752. doi: 10.1016/j.foodchem.2024.140752
|
[43] |
ZHANG X H, PAN H, JIANG X, et al. Study on the mechanism of soy protein isolate to improve quality of reduced-salt Hypophthalmichthys molitrix surimi gel: focus on gel quality, protein structure, and in vitro digestibility[J]. Food Chem: X, 2023, 20: 100878. doi: 10.1016/j.fochx.2023.100878
|
[44] |
ZHAO X Y, WANG X F, ZENG L J, et al. Effects of oil-modified crosslinked/acetylated starches on silver carp surimi gel: texture properties, water mobility, microstructure, and related mechanisms[J]. Food Res Int, 2022, 158: 111521. doi: 10.1016/j.foodres.2022.111521
|
[45] |
YAN S, LIU X H, SANG Y X, et al. Gel mechanism analysis of minced scallop (Patinopecten yessoensis) meat modified by three kinds of food colloids[J]. Food Biosci, 2024, 57: 103541. doi: 10.1016/j.fbio.2023.103541
|
[46] |
LIU X, LIU Y N, DU X P, et al. Characterization of bamboo shoots dietary fiber modified by ball milling and its role in altering the physicochemical properties of shrimp surimi[J]. Int J Biol Macromol, 2024, 271: 131979. doi: 10.1016/j.ijbiomac.2024.131979
|
[47] |
ZHAO Y D, PIAO X Y, ZHENG B, et al. Enhancement of surimi gel properties through the synergetic effect of fucoidan and oligochitosan[J]. Food Hydrocoll, 2023, 140: 108626. doi: 10.1016/j.foodhyd.2023.108626
|
[48] |
MAN H, SUN P Z, LIN J X, et al. Based on hydrogen and disulfide-mediated bonds, l-lysine and l-arginine enhanced the gel properties of low-salt mixed shrimp surimi (Antarctic krill and Pacific white shrimp)[J]. Food Chem, 2024, 445: 138735. doi: 10.1016/j.foodchem.2024.138735
|
[49] |
张晓慧, 郭全友, 郑尧, 等. 变性淀粉协同非肌肉蛋白对鱿鱼鱼糜制品凝胶特性及其蛋白构象的影响[J]. 食品科学, 2023, 44(20): 43-52. doi: 10.7506/spkx1002-6630-20221219-194
|
[50] |
WEI Q J, ZHANG W W, WANG J J, et al. Effect of κ-carrageenan on the quality of crayfish surimi gels[J]. Food Chem: X, 2024, 22: 101497. doi: 10.1016/j.fochx.2024.101497
|
[51] |
HE X L, LV Y N, LI X P, et al. Improvement of gelation properties of silver carp surimi through ultrasound-assisted water bath heating[J]. Ultraso Sonochem, 2022, 83: 105942. doi: 10.1016/j.ultsonch.2022.105942
|
[52] |
PIAO X Y, LI J W, ZHAO Y D, et al. Oxidized cellulose nanofibrils-based surimi gel enhancing additives: interactions, performance and mechanisms[J]. Food Hydrocoll, 2022, 133: 107893. doi: 10.1016/j.foodhyd.2022.107893
|