ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044
Citation: ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044

Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio

More Information
  • Received Date: January 21, 2021
  • Revised Date: November 21, 2021
  • Accepted Date: November 28, 2021
  • Available Online: December 15, 2021
  • In order to improve the flow field characteristics in dual-drain square aquaculture tank, we combined arc angle and straight edge to optimize the flow field, so as to provide better aquaculture equipment for the recirculating aquaculture industry. We applied computational fluid dynamics technology to simulate the flow field in dual-drain aquaculture tanks, and evaluated the effect of relative arc to width ratio (R/B, R is the radius of arc angle, B is the side length of tank wall) on the flow field characteristics in the tanks by analyzing corrected velocity v0 and uniformity coefficient UC50. The results show a same rule under different conditions of underflow split ratio (The percentage of outflow from the center outlet at the bottom of the tank in the total outflow). The average velocity in the square arc angle aquaculture tanks with 0.2≤R/B<0.4 was about twice than that in the square aquaculture tanks for the same water exchange rate, but there was no significant difference compared with the circular aquaculture tanks. According to the analysis of flow field uniformity, the square arc angle aquaculture tanks with 0.2≤R/B<0.4 had higher uniformity coefficient, and even higher than that of circular aquaculture tanks. The research indicates that the area of lower velocity caused by the right angle in the square aquaculture tanks reduced effectively by the arc angle in the square arc angle aquaculture tanks, and higher space utilization rate was retained. The advantages of the square aquaculture tank and the circular aquaculture tank are fully combined in the square arc angle aquaculture tank, which solves the problem of poor flow pattern in dual-drain square aquaculture tank, with good industrial popularization and application value.
  • [1]
    ALMANSA C, REIG L, OCA J. Use of laser scanning to evaluate turbot (Scophthalmus maximus) distribution in raceways with different water velocities[J]. Aquac Eng, 2012, 51: 7-14. doi: 10.1016/j.aquaeng.2012.04.002
    [2]
    ROSS R M, WATTEN B J, KRISE W F, et al. Influence of tank design and hydraulic loading on the behavior, growth and metabolism of rainbow trout (Oncorhynchus mykiss)[J]. Aquac Eng, 1995, 14: 29-47. doi: 10.1016/0144-8609(94)P4425-B
    [3]
    王江竹, 宛立, 任效忠, 等. 循环水养殖中水动力特性对鱼类影响的研究进展[J]. 水产科学, 2020, 39(3): 458-464.
    [4]
    DUARTE S, REIG L, MASALÓ I, et al. Influence of tank geometry and flow pattern in fish distribution[J]. Aquac Eng, 2011, 44: 48-54. doi: 10.1016/j.aquaeng.2010.12.002
    [5]
    秦抱元, 刘鹰. 澳大利亚海洋渔业工程发展概况与中澳海洋渔业合作前景分析[J]. 农业工程学报, 2020, 36(11): 318-326. doi: 10.11975/j.issn.1002-6819.2020.11.038
    [6]
    OCA J, MASALÓ I. Design criteria for rotating flow cells in rectangular aquaculture tanks[J]. Aquac Eng, 2007, 36: 36-44. doi: 10.1016/j.aquaeng.2006.06.001
    [7]
    ELALOUF H, KASPI M, ELALOUF A, et al. Optimal operation policy for a sustainable recirculation aquaculture system for ornamental fish: simulation and response surface methodology[J]. Comput Oper Res, 2018, 89: 230-240. doi: 10.1016/j.cor.2017.05.002
    [8]
    FARGHALLY H M, ATIA D M, EL-MADANY H T, et al. Control methodologies based on geothermal recirculating aquaculture system[J]. Energy, 2014, 78: 826-833. doi: 10.1016/j.energy.2014.10.077
    [9]
    LABATUT R A, EBELING J M, BHASKARAN R, et al. Hydrodynamics of a large-scale mixed-cell raceway (MCR): experimental studies[J]. Aquac Eng, 2007, 37: 132-143. doi: 10.1016/j.aquaeng.2007.04.001
    [10]
    LABATUT R A, EBELING J M, BHASKARAN R, et al. Effects of inlet and outlet flow characteristics on mixed-cell raceway (MCR) hydrodynamics[J]. Aquac Eng, 2007, 37: 158-170. doi: 10.1016/j.aquaeng.2007.04.002
    [11]
    于林平, 薛博茹, 任效忠, 等. 单进水管结构对单通道方形圆弧角养殖池水动力特性的影响研究[J]. 大连海洋大学学报, 2020, 35(1): 134-140.
    [12]
    任效忠, 薛博茹, 姜恒志, 等. 双进水管系统对单通道矩形圆弧角养殖池水动力特性影响的数值研究[J]. 海洋环境科学, 2021, 40(1): 50-56. doi: 10.12111/j.mes.20190234
    [13]
    任效忠, 王江竹, 张倩, 等. 方形圆弧角养殖池进水结构对流场影响的试验研究[J]. 大连海洋大学学报, 2020, 35(5): 726-732.
    [14]
    GORLE J M R, TERJESEN B F, SUMMERFELT S T. Hydrodynamics of octagonal culture tanks with Cornell-type dual-drain system[J]. Comput Electron Agric, 2018, 151: 354-364. doi: 10.1016/j.compag.2018.06.012
    [15]
    PFEIFFER T J, RICHE M A. Evaluation of a low-head Recirculating Aquaculture System used for rearing Florida pompano to market size[J]. J World Aquac Soc, 2011, 42(2): 198-208. doi: 10.1111/j.1749-7345.2011.00456.x
    [16]
    TERJESEN B F, SUMMERFELT S T, NERLAND S, et al. Design, dimensioning, and performance of a research facility for studies on the requirements of fish in RAS environments[J]. Aquac Eng, 2013, 54: 49-63. doi: 10.1016/j.aquaeng.2012.11.002
    [17]
    CARVALHO R A P L F, LEMOS D E L, TACONB A G J. Performance of single-drain and dual-drain tanks in terms of water velocity profile and solids flushing for in vivo digestibility studies in juvenile shrimp[J]. Aquac Eng, 2013, 57: 9-17. doi: 10.1016/j.aquaeng.2013.05.004
    [18]
    SUMMERFELT S T, MATHISEN F, HOLAN A B, et al. Survey of large circular and octagonal tanks operated at Norwegian commercial smolt and post-smolt sites[J]. Aquac Eng, 2016, 74: 105-110. doi: 10.1016/j.aquaeng.2016.07.004
    [19]
    史明明, 阮贇杰, 刘晃, 等. 基于CFD的循环生物絮团系统养殖池固相分布均匀性评价[J]. 农业工程学报, 2017, 33(2): 252-258. doi: 10.11975/j.issn.1002-6819.2017.02.035
    [20]
    GORLE J M R, TERJESEN B F, MOTA V C, et al. Water velocity in commercial RAS culture tanks for Atlantic salmon smolt production[J]. Aquac Eng, 2018, 81: 89-100. doi: 10.1016/j.aquaeng.2018.03.001
    [21]
    KLEBERT P, VOLENT Z, ROSTEN T. Measurement and simulation of the three-dimensional flow pattern and particle removal efficiencies in a large floating closed sea cage with multiple inlets and drains[J]. Aquac Eng, 2018, 80: 11-21. doi: 10.1016/j.aquaeng.2017.11.001
    [22]
    刘志强, 许柳雄, 唐浩, 等. 不同工作姿态下立式双曲面网板水动力及周围流场特性研究[J]. 南方水产科学, 2020, 16(2): 87-98.
    [23]
    薛博茹, 姜恒志, 任效忠, 等. 进径比对方形圆弧角养殖池内流场特性的影响研究[J]. 渔业现代化, 2020, 47(4): 20-27. doi: 10.3969/j.issn.1007-9580.2020.04.004
    [24]
    LABATUT R A, EBELING J M, BHASKARAN R, et al. Exploring flow discharge strategies of a mixed-cell raceway (MCR) using 2-D computational fluid dynamics (CFD)[J]. Aquac Eng, 2015, 66: 68-77. doi: 10.1016/j.aquaeng.2015.01.001
    [25]
    LABATUT R A, EBELING J M, BHASKARAN R, et al. Modeling hydrodynamics and path/residence time of aquaculture-like particles in a mixed-cell raceway (MCR) using 3D computational fluid dynamics (CFD)[J]. Aquac Eng, 2015, 67: 39-52. doi: 10.1016/j.aquaeng.2015.05.006
    [26]
    BEHROOZI L, COUTURIER M F. Prediction of water velocities in circular aquaculture tanks using an axisymmetric CFD model[J]. Aquac Eng, 2019, 85: 114-128. doi: 10.1016/j.aquaeng.2019.03.005
    [27]
    LIU Y, LIU B, LEI J, et al. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems[J]. Chin J Oceanol Limnol, 2017, 35(4): 912-920. doi: 10.1007/s00343-017-6051-3
    [28]
    桂劲松, 张倩, 任效忠, 等. 圆弧角优化对单通道方形养殖池流场特性的影响研究[J]. 大连海洋大学学报, 2020, 35(2): 308-316.
    [29]
    俞国燕, 魏武, 王筱珍, 等. 双通道养殖池流态模拟及验证[J]. 渔业现代化, 2012, 39(6): 10-14. doi: 10.3969/j.issn.1007-9580.2012.06.003
    [30]
    DAVIDSON J, SUMMERFELT S. Solids flushing, mixing, and water velocity profiles within large (10 and 150 m3) circular 'Cornell-type' dual-drain tanks[J]. Aquac Eng, 2004, 32: 245-271. doi: 10.1016/j.aquaeng.2004.03.009
    [31]
    魏武. 循环水圆形养殖池数值模拟及结构优化[D]. 湛江: 广东海洋大学, 2013: 28-31.
    [32]
    张倩, 桂劲松, 薛博茹, 等. 双通道排水系统对矩形圆弧角养殖池流场特性的影响研究[J]. 渔业现代化, 2020, 47(6): 19-25. doi: 10.3969/j.issn.1007-9580.2020.06.004
    [33]
    WATTEN B J, HONEYFIELD D C, SCHWARTZ M F. Hydraulic characteristics of a rectangular mixed-cell rearing unit[J]. Aquac Eng, 2000, 24: 59-73. doi: 10.1016/S0144-8609(00)00064-9
    [34]
    OCA J, MASALÓ I, REIG L. Comparative analysis of flow patterns in aquaculture rectangular tanks with different water inlet characteristics[J]. Aquac Eng, 2004, 31: 221-236. doi: 10.1016/j.aquaeng.2004.04.002
    [35]
    MASALÓ I, OCA J. Hydrodynamics in a multivortex aquaculture tank: effect of baffles and water inlet characteristics[J]. Aquac Eng, 2014, 58: 69-76. doi: 10.1016/j.aquaeng.2013.11.001
    [36]
    LUNGER A, RASMUSSEN M R, LAURSEN J, et al. Fish stocking density impacts tank hydrodynamics[J]. Aquaculture, 2006, 254: 370-375. doi: 10.1016/j.aquaculture.2005.10.023
    [37]
    RASMUSSEN M R, LAURSEN J, CRAIG, S R, et al. Do fish enhance tank mixing?[J]. Aquaculture, 2005, 250: 162-174. doi: 10.1016/j.aquaculture.2005.02.041
    [38]
    MASALÓ I, OCA J. Influence of fish swimming on the flow pattern of circular tanks[J]. Aquac Eng, 2016, 74: 84-95. doi: 10.1016/j.aquaeng.2016.07.001
  • Related Articles

    [1]ZHANG Fan, CUI Mingchao, LIU Huang, YAO Chunjing, ZHANG Chen. Experimental study of flow field characteristics in tanks with different diameter-to-depth ratios[J]. South China Fisheries Science. DOI: 10.12131/20240290
    [2]ZHANG Chen, LIU Huang, ZHANG Chenglin, ZHANG Fan. Effect of water inflow methods on flow field and suitability for aquaculture in rectangular farming tanks[J]. South China Fisheries Science, 2024, 20(6): 121-131. DOI: 10.12131/20240192
    [3]JIANG Shuxia, KONG Xianghong, HUANG Xiaoshuang, YE Xuchang, CAO Daomei. Study on hydrodynamic characteristics and flow field visualization of multi-blade controllable otter board based on CFD[J]. South China Fisheries Science, 2024, 20(5): 136-148. DOI: 10.12131/20240095
    [4]YUAN Taiping, HU Yu, WANG Shaoming, LIAO Yuqi, TAO Qiyou, HUANG Xiaohua, LIU Haiyang, GUO Gengxi. Research on performance of cavitation jet equipment for deep-water cage cleaning[J]. South China Fisheries Science, 2021, 17(4): 109-117. DOI: 10.12131/20210027
    [5]LIU Zhiqiang, XU Liuxiong, TANG Hao, HU Fuxiang, ZHOU Cheng. Hydrodynamic performance and around flow field of biplane-type otter board with different working positions[J]. South China Fisheries Science, 2020, 16(2): 87-98. DOI: 10.12131/20190221
    [6]HU Yu, HUANG Xiaohua, TAO Qiyou, YUAN Taiping, WANG Shaomin, LIU Haiyang. Simulation of automatic pneumatic conveying process of automatic feeding system based on computational fluid dynamics-discrete element method[J]. South China Fisheries Science, 2019, 15(3): 113-119. DOI: 10.12131/20180219
    [7]XU Maosen, LONG Xinping, ZHU Ye, LI Li, WU Ning, RUAN Xiaofeng. Research on grass carp conveyance performance of jet fish pump[J]. South China Fisheries Science, 2017, 13(1): 117-123. DOI: 10.3969/j.issn.2095-0780.2017.001.015
    [8]LIU Lili, WAN Rong, WANG Xijie, WANG Sijie, WANG Yunzhong. Analysis of effects of fishery stock enhancement based on system dynamics model[J]. South China Fisheries Science, 2012, 8(1): 16-23. DOI: 10.3969/j.issn.2095-0780.2012.01.003
    [9]HU Yu, GUO Genxi, HUANG Xiaohua, TAO Qiyou, ZHANG Xiaoming. Simulation of flow field inside the net cleaning machine based on ANSYS[J]. South China Fisheries Science, 2010, 6(1): 7-11. DOI: 10.3969/j.issn.1673-2227.2010.01.002
    [10]LIU Jingke, CHEN Chunliang. Computer assisted calculation of the parameters of rope matching for a trawl[J]. South China Fisheries Science, 2007, 3(5): 61-64.
  • Cited by

    Periodical cited type(3)

    1. 李彬涛,谭鹤群,张义仁,夏成醒. 进水结构对圆形循环水养殖池流场的影响. 华中农业大学学报. 2024(02): 22-29 .
    2. 李瑞鹏,田云臣,李青飞,丛雪琪,秦海晶. 进水流速对圆形循环水养殖池流场特性影响的数值模拟. 渔业科学进展. 2024(03): 55-65 .
    3. 史宪莹,李猛,任效忠,冯德军,刘航飞,周寅鑫,刘海波,赵晨旭. 长宽比对双进水管结构矩形圆弧角养殖池排污特性的影响. 大连海洋大学学报. 2023(04): 707-716 .

    Other cited types(2)

Catalog

    Article views (785) PDF downloads (57) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return