ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044
Citation: ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044

Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio

More Information
  • Received Date: January 21, 2021
  • Revised Date: November 21, 2021
  • Accepted Date: November 28, 2021
  • Available Online: December 15, 2021
  • In order to improve the flow field characteristics in dual-drain square aquaculture tank, we combined arc angle and straight edge to optimize the flow field, so as to provide better aquaculture equipment for the recirculating aquaculture industry. We applied computational fluid dynamics technology to simulate the flow field in dual-drain aquaculture tanks, and evaluated the effect of relative arc to width ratio (R/B, R is the radius of arc angle, B is the side length of tank wall) on the flow field characteristics in the tanks by analyzing corrected velocity v0 and uniformity coefficient UC50. The results show a same rule under different conditions of underflow split ratio (The percentage of outflow from the center outlet at the bottom of the tank in the total outflow). The average velocity in the square arc angle aquaculture tanks with 0.2≤R/B<0.4 was about twice than that in the square aquaculture tanks for the same water exchange rate, but there was no significant difference compared with the circular aquaculture tanks. According to the analysis of flow field uniformity, the square arc angle aquaculture tanks with 0.2≤R/B<0.4 had higher uniformity coefficient, and even higher than that of circular aquaculture tanks. The research indicates that the area of lower velocity caused by the right angle in the square aquaculture tanks reduced effectively by the arc angle in the square arc angle aquaculture tanks, and higher space utilization rate was retained. The advantages of the square aquaculture tank and the circular aquaculture tank are fully combined in the square arc angle aquaculture tank, which solves the problem of poor flow pattern in dual-drain square aquaculture tank, with good industrial popularization and application value.
  • [1]
    ALMANSA C, REIG L, OCA J. Use of laser scanning to evaluate turbot (Scophthalmus maximus) distribution in raceways with different water velocities[J]. Aquac Eng, 2012, 51: 7-14. doi: 10.1016/j.aquaeng.2012.04.002
    [2]
    ROSS R M, WATTEN B J, KRISE W F, et al. Influence of tank design and hydraulic loading on the behavior, growth and metabolism of rainbow trout (Oncorhynchus mykiss)[J]. Aquac Eng, 1995, 14: 29-47. doi: 10.1016/0144-8609(94)P4425-B
    [3]
    王江竹, 宛立, 任效忠, 等. 循环水养殖中水动力特性对鱼类影响的研究进展[J]. 水产科学, 2020, 39(3): 458-464.
    [4]
    DUARTE S, REIG L, MASALÓ I, et al. Influence of tank geometry and flow pattern in fish distribution[J]. Aquac Eng, 2011, 44: 48-54. doi: 10.1016/j.aquaeng.2010.12.002
    [5]
    秦抱元, 刘鹰. 澳大利亚海洋渔业工程发展概况与中澳海洋渔业合作前景分析[J]. 农业工程学报, 2020, 36(11): 318-326. doi: 10.11975/j.issn.1002-6819.2020.11.038
    [6]
    OCA J, MASALÓ I. Design criteria for rotating flow cells in rectangular aquaculture tanks[J]. Aquac Eng, 2007, 36: 36-44. doi: 10.1016/j.aquaeng.2006.06.001
    [7]
    ELALOUF H, KASPI M, ELALOUF A, et al. Optimal operation policy for a sustainable recirculation aquaculture system for ornamental fish: simulation and response surface methodology[J]. Comput Oper Res, 2018, 89: 230-240. doi: 10.1016/j.cor.2017.05.002
    [8]
    FARGHALLY H M, ATIA D M, EL-MADANY H T, et al. Control methodologies based on geothermal recirculating aquaculture system[J]. Energy, 2014, 78: 826-833. doi: 10.1016/j.energy.2014.10.077
    [9]
    LABATUT R A, EBELING J M, BHASKARAN R, et al. Hydrodynamics of a large-scale mixed-cell raceway (MCR): experimental studies[J]. Aquac Eng, 2007, 37: 132-143. doi: 10.1016/j.aquaeng.2007.04.001
    [10]
    LABATUT R A, EBELING J M, BHASKARAN R, et al. Effects of inlet and outlet flow characteristics on mixed-cell raceway (MCR) hydrodynamics[J]. Aquac Eng, 2007, 37: 158-170. doi: 10.1016/j.aquaeng.2007.04.002
    [11]
    于林平, 薛博茹, 任效忠, 等. 单进水管结构对单通道方形圆弧角养殖池水动力特性的影响研究[J]. 大连海洋大学学报, 2020, 35(1): 134-140.
    [12]
    任效忠, 薛博茹, 姜恒志, 等. 双进水管系统对单通道矩形圆弧角养殖池水动力特性影响的数值研究[J]. 海洋环境科学, 2021, 40(1): 50-56. doi: 10.12111/j.mes.20190234
    [13]
    任效忠, 王江竹, 张倩, 等. 方形圆弧角养殖池进水结构对流场影响的试验研究[J]. 大连海洋大学学报, 2020, 35(5): 726-732.
    [14]
    GORLE J M R, TERJESEN B F, SUMMERFELT S T. Hydrodynamics of octagonal culture tanks with Cornell-type dual-drain system[J]. Comput Electron Agric, 2018, 151: 354-364. doi: 10.1016/j.compag.2018.06.012
    [15]
    PFEIFFER T J, RICHE M A. Evaluation of a low-head Recirculating Aquaculture System used for rearing Florida pompano to market size[J]. J World Aquac Soc, 2011, 42(2): 198-208. doi: 10.1111/j.1749-7345.2011.00456.x
    [16]
    TERJESEN B F, SUMMERFELT S T, NERLAND S, et al. Design, dimensioning, and performance of a research facility for studies on the requirements of fish in RAS environments[J]. Aquac Eng, 2013, 54: 49-63. doi: 10.1016/j.aquaeng.2012.11.002
    [17]
    CARVALHO R A P L F, LEMOS D E L, TACONB A G J. Performance of single-drain and dual-drain tanks in terms of water velocity profile and solids flushing for in vivo digestibility studies in juvenile shrimp[J]. Aquac Eng, 2013, 57: 9-17. doi: 10.1016/j.aquaeng.2013.05.004
    [18]
    SUMMERFELT S T, MATHISEN F, HOLAN A B, et al. Survey of large circular and octagonal tanks operated at Norwegian commercial smolt and post-smolt sites[J]. Aquac Eng, 2016, 74: 105-110. doi: 10.1016/j.aquaeng.2016.07.004
    [19]
    史明明, 阮贇杰, 刘晃, 等. 基于CFD的循环生物絮团系统养殖池固相分布均匀性评价[J]. 农业工程学报, 2017, 33(2): 252-258. doi: 10.11975/j.issn.1002-6819.2017.02.035
    [20]
    GORLE J M R, TERJESEN B F, MOTA V C, et al. Water velocity in commercial RAS culture tanks for Atlantic salmon smolt production[J]. Aquac Eng, 2018, 81: 89-100. doi: 10.1016/j.aquaeng.2018.03.001
    [21]
    KLEBERT P, VOLENT Z, ROSTEN T. Measurement and simulation of the three-dimensional flow pattern and particle removal efficiencies in a large floating closed sea cage with multiple inlets and drains[J]. Aquac Eng, 2018, 80: 11-21. doi: 10.1016/j.aquaeng.2017.11.001
    [22]
    刘志强, 许柳雄, 唐浩, 等. 不同工作姿态下立式双曲面网板水动力及周围流场特性研究[J]. 南方水产科学, 2020, 16(2): 87-98.
    [23]
    薛博茹, 姜恒志, 任效忠, 等. 进径比对方形圆弧角养殖池内流场特性的影响研究[J]. 渔业现代化, 2020, 47(4): 20-27. doi: 10.3969/j.issn.1007-9580.2020.04.004
    [24]
    LABATUT R A, EBELING J M, BHASKARAN R, et al. Exploring flow discharge strategies of a mixed-cell raceway (MCR) using 2-D computational fluid dynamics (CFD)[J]. Aquac Eng, 2015, 66: 68-77. doi: 10.1016/j.aquaeng.2015.01.001
    [25]
    LABATUT R A, EBELING J M, BHASKARAN R, et al. Modeling hydrodynamics and path/residence time of aquaculture-like particles in a mixed-cell raceway (MCR) using 3D computational fluid dynamics (CFD)[J]. Aquac Eng, 2015, 67: 39-52. doi: 10.1016/j.aquaeng.2015.05.006
    [26]
    BEHROOZI L, COUTURIER M F. Prediction of water velocities in circular aquaculture tanks using an axisymmetric CFD model[J]. Aquac Eng, 2019, 85: 114-128. doi: 10.1016/j.aquaeng.2019.03.005
    [27]
    LIU Y, LIU B, LEI J, et al. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems[J]. Chin J Oceanol Limnol, 2017, 35(4): 912-920. doi: 10.1007/s00343-017-6051-3
    [28]
    桂劲松, 张倩, 任效忠, 等. 圆弧角优化对单通道方形养殖池流场特性的影响研究[J]. 大连海洋大学学报, 2020, 35(2): 308-316.
    [29]
    俞国燕, 魏武, 王筱珍, 等. 双通道养殖池流态模拟及验证[J]. 渔业现代化, 2012, 39(6): 10-14. doi: 10.3969/j.issn.1007-9580.2012.06.003
    [30]
    DAVIDSON J, SUMMERFELT S. Solids flushing, mixing, and water velocity profiles within large (10 and 150 m3) circular 'Cornell-type' dual-drain tanks[J]. Aquac Eng, 2004, 32: 245-271. doi: 10.1016/j.aquaeng.2004.03.009
    [31]
    魏武. 循环水圆形养殖池数值模拟及结构优化[D]. 湛江: 广东海洋大学, 2013: 28-31.
    [32]
    张倩, 桂劲松, 薛博茹, 等. 双通道排水系统对矩形圆弧角养殖池流场特性的影响研究[J]. 渔业现代化, 2020, 47(6): 19-25. doi: 10.3969/j.issn.1007-9580.2020.06.004
    [33]
    WATTEN B J, HONEYFIELD D C, SCHWARTZ M F. Hydraulic characteristics of a rectangular mixed-cell rearing unit[J]. Aquac Eng, 2000, 24: 59-73. doi: 10.1016/S0144-8609(00)00064-9
    [34]
    OCA J, MASALÓ I, REIG L. Comparative analysis of flow patterns in aquaculture rectangular tanks with different water inlet characteristics[J]. Aquac Eng, 2004, 31: 221-236. doi: 10.1016/j.aquaeng.2004.04.002
    [35]
    MASALÓ I, OCA J. Hydrodynamics in a multivortex aquaculture tank: effect of baffles and water inlet characteristics[J]. Aquac Eng, 2014, 58: 69-76. doi: 10.1016/j.aquaeng.2013.11.001
    [36]
    LUNGER A, RASMUSSEN M R, LAURSEN J, et al. Fish stocking density impacts tank hydrodynamics[J]. Aquaculture, 2006, 254: 370-375. doi: 10.1016/j.aquaculture.2005.10.023
    [37]
    RASMUSSEN M R, LAURSEN J, CRAIG, S R, et al. Do fish enhance tank mixing?[J]. Aquaculture, 2005, 250: 162-174. doi: 10.1016/j.aquaculture.2005.02.041
    [38]
    MASALÓ I, OCA J. Influence of fish swimming on the flow pattern of circular tanks[J]. Aquac Eng, 2016, 74: 84-95. doi: 10.1016/j.aquaeng.2016.07.001
  • Cited by

    Periodical cited type(3)

    1. 左鹏翔,金方彭,王志飞,吴俊颉,赵静霞,赵利刚,王文玉,毕晓敏,沈智敏,李波,冷云. 细鳞裂腹鱼(♀)与鲈鲤(♂)杂交及生长对比试验初报. 中国农学通报. 2024(11): 159-164 .
    2. 陈军平,沈方方,武慧慧,张佳鑫,于若梦,付永杰,谢国强,赵道全. 我国鱼类胚胎发育研究进展. 江苏农业科学. 2021(17): 45-52 .
    3. 梁孟,魏开金,朱祥云,马宝珊,徐滨,徐进. 饥饿和再投喂对短须裂腹鱼幼鱼体组分、消化酶活性及RNA/DNA的影响. 中国农学通报. 2020(23): 151-160 .

    Other cited types(1)

Catalog

    Recommendations
    Influence of miniature temperature-depth recorder (tdr-2050) on hook depth of tuna longline fishing hooks
    SONG Liming et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Effects of complex carbon sources on vertical distribution and exchange flux of dissolved nutrients at sediment-water interface
    LUO Yimin et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Effect of water inflow methods on flow field and suitability for aquaculture in rectangular farming tanks
    ZHANG Chen et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Study on hydrodynamic characteristics and flow field visualization of multi-blade controllable otter board based on cfd
    JIANG Shuxia et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Rainwater harvesting system: an approach for optimum tank size design and assessment of efficiency.
    Sadia Tamanna Khan et al., INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND DEVELOPMENT, 2017
    Characterization and application of flow heterogeneity in high water cut reservoirs
    ZHANG Min et al., PETROLEUM RESERVOIR EVALUATION AND DEVELOPMENT, 2025
    Water quality in biofloc technology (bft): an applied review for an evolving aquaculture
    Khanjani, Mohammad Hossein et al., AQUACULTURE INTERNATIONAL, 2024
    Positive steady-state solutions for a water-vegetation model with the infiltration feedback effect
    Guo, Gaihui et al., DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024
    Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region
    AGRICULTURAL WATER MANAGEMENT
    Experimental study on the hydrodynamic performance of a multi-dofwec-type floating breakwater
    RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, 2024
    Powered by
    Article views (803) PDF downloads (58) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return