Citation: | ZHANG Fan, CUI Mingchao, LIU Huang, YAO Chunjing, ZHANG Chen. Experimental study of flow field characteristics in tanks with different diameter-to-depth ratios[J]. South China Fisheries Science. DOI: 10.12131/20240290 |
Aquaculture vessels are a new way to expand deep-sea aquaculture. How to improve the utilization efficiency of aquaculture tanks to ensure the best growth conditions for fish in aquaculture tanks and the efficient discharge of particulate matter from the tanks will affect the productivity of aquaculture and the profitability of aquaculture vessels. In order to investigate the influence of the diameter to depth ratio of the tanks on the flow field characteristics and the drag coefficient of the tanks, as well as to provide a reference for the structural design and optimization of aquaculture tanks on aquaculture vessels, we carried out an experiment of the flow field characteristics of the tanks of aquaculture platform under mooring condition by using a real-ship test method. We evaluated the influence of the diameter to depth ratio on the fishability and energy loss of the tanks by studying the flow velocity, drag coefficient and the uniformity index of flow field, etc. The experimental results show that the flow velocity in the tanks was positively correlated with the diameter to depth ratio: when the diameter to depth ratio was less than 1.6:1, the reduction of the diameter to depth ratio led to a significant reduction of the flow velocity in the tanks, and the tanks with a diameter to depth ratio of 1.8∶1–2.0∶1 possessed better flow characteristics, including higher flow velocity, flow uniformity and lower drag coefficient; a diameter to depth ratio of 1.8∶1 for the aquaculture tanks met the requirements of flow field and economic efficiency in the tanks, and this ratio should be considered as a priority in the aquaculture system of aquaculture vessels.
[1] |
鲍旭腾, 谌志新, 崔铭超, 等. 中国深远海养殖装备发展探议及思考[J]. 渔业现代化, 2022, 49(5): 8-14.
|
[2] |
徐皓, 江涛. 我国离岸养殖工程发展策略[J]. 渔业现代化, 2012, 39(4): 1-7. doi: 10.3969/j.issn.1007-9580.2012.04.001
|
[3] |
徐皓, 谌志新, 蔡计强, 等. 我国深远海养殖工程装备发展研究[J]. 渔业现代化, 2016, 43(3): 1-6. doi: 10.3969/j.issn.1007-9580.2016.03.001
|
[4] |
蔡计强, 张宇雷, 李建宇, 等. 10万吨级深远海养殖平台总体技术研究[J]. 船舶工程, 2017, 39(S1): 198-203.
|
[5] |
崔铭超, 金娇辉, 黄温赟. 养殖工船系统构建与总体技术探讨[J]. 渔业现代化, 2019, 46(2): 61-66. doi: 10.3969/j.issn.1007-9580.2019.02.010
|
[6] |
TAO Y W, ZHU R Q, GU J Y, et al. Experimental and numerical investigation of the hydrodynamic response of an aquaculture vessel[J]. Ocean Engin, 2023, 279: 114505. doi: 10.1016/j.oceaneng.2023.114505
|
[7] |
WANG W H, LI M, FAN G Q, et al. Analysis of fluid field in fish tank of breeding vessel with perforated broadsides under wave conditions[J]. J Mar Sci Engin, 2024, 12(3): 367. doi: 10.3390/jmse12030367
|
[8] |
王银涛, 李志松, 郭晓宇, 等. 养殖工船养舱流场数值仿真与特性分析[J]. 渔业现代化, 2022, 49(5): 24-34.
|
[9] |
崔铭超, 王庆伟, 张彬. 纵摇运动下船载养殖水体流场特性数值分析[J]. 船舶工程, 2020, 42(10): 56-60,132.
|
[10] |
QIAN Z J, XU J C, LIU H, et al. Short-term flow velocity stress on the behavioral, physiological, and biochemical responses of the large yellow croaker (Larimichthys crocea)[J]. J Mar Sci Engin, 2024, 12(11): 2056. doi: 10.3390/jmse12112056
|
[11] |
YIN G, ONG M C, LEE J, et al. Numerical simulation of oxygen transport in land-based aquaculture tank[J]. Aquaculture, 2021, 543: 736973. doi: 10.1016/j.aquaculture.2021.736973
|
[12] |
LEE J V, LOO L, CHUAH Y, et al. The design of a culture tank in an automated recirculating aquaculture system[J]. Inter J Engin Appl Sci, 2013, 2(2): 67-77.
|
[13] |
OCA J, MASALÓ I, REIG L. Comparative analysis of flow patterns in aquaculture rectangular tanks with different water inlet characteristics[J]. Aquac Engin, 2004, 31(3-4): 221-236. doi: 10.1016/j.aquaeng.2004.04.002
|
[14] |
OCA J, MASALÓ I. Design criteria for rotating flow cells in rectangular aquaculture tanks[J]. Aquac Engin, 2007, 36(1): 36-44. doi: 10.1016/j.aquaeng.2006.06.001
|
[15] |
PLEW D R, KLEBERT P, ROSTEN T W, et al. Changes to flow and turbulence caused by different concentrations of fish in a circular tank[J]. Jo Hydraulic Res, 2015, 53(3): 364-383. doi: 10.1080/00221686.2015.1029016
|
[16] |
LI Z S, GUO X Y, CUI M C. Numerical investigation of flow characteristics in a rearing tank aboard an aquaculture vessel[J]. Aquac Engin, 2022, 98: 102272. doi: 10.1016/j.aquaeng.2022.102272
|
[17] |
CUI M C, LI Z S, ZHANG C L, et al. Statistical investigation into the flow field of closed aquaculture tanks aboard a platform under periodic oscillation[J]. Ocean Engin, 2022, 248: 110677. doi: 10.1016/j.oceaneng.2022.110677
|
[18] |
GUO X Y, LI Z S, CUI M C, et al. Numerical investigation on flow characteristics of water in the fish tank on a force-rolling aquaculture platform[J]. Ocean Engin, 2020, 217: 107936. doi: 10.1016/j.oceaneng.2020.107936
|
[19] |
秦康, 崔铭超, 刘晃, 等. 基于FLOW-3D的船载舱养流场特性分析[J]. 渔业现代化, 2022, 49(5): 35-44.
|
[20] |
秦康, 崔铭超, 刘晃, 等. 养殖工船鱼舱流速特性的实船试验研究[J]. 大连海洋大学学报, 2023, 38(3): 524-532.
|
[21] |
FIROOZKOOHI R, FALTINSEN O M, ARSLAN T. Investigation of finite water depth sloshing in a tank in the presence of slat screens using model test and CFD[J]. Inter J Offshore Polar Engin, 2016, 26(2): 146-153. doi: 10.17736/ijope.2016.ak13
|
[22] |
FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen[J]. J Engin Math, 2011, 70: 93-109. doi: 10.1007/s10665-010-9397-5
|
[23] |
高瑞, 崔铭超, 王庆伟, 等. 养殖水舱横摇适鱼性数值分析[J]. 船舶工程, 2020, 42(12): 35-42,47.
|
[24] |
XIONG Z X, HE M X, ZHU W Y, et al. Analysis of flow field characteristics of aquaculture cabin of aquaculture ship[J]. J Mar Sci Engin, 2023, 11(2): 390. doi: 10.3390/jmse11020390
|
[25] |
吉泽坤, 刘晃, 崔铭超, 等. 颗粒特性对矩形养殖舱中颗粒物去除效果的影响[J]. 上海海洋大学学报, 2023, 32(5): 1068-1079. doi: 10.12024/jsou.20230604226
|
[26] |
ZHANG F, CUI M C, LIU H, et al. The effect of corner structure on the optimisation of fishable flow field in aquaculture tanks[J]. J Mar Sci Engin, 2024, 12(7): 1185. doi: 10.3390/jmse12071185
|
[27] |
XUE B R, ZHAO Y P, BI C W, et al. Investigation of flow field and pollutant particle distribution in the aquaculture tank for fish farming based on computational fluid dynamics[J]. Comp Electronics Agric, 2022, 200: 107243. doi: 10.1016/j.compag.2022.107243
|
[28] |
张俊, 王明华, 贾广臣, 等. 不同池型结构循环水养殖池水动力特性研究[J]. 农业机械学报, 2022, 53(3): 311-320. doi: 10.6041/j.issn.1000-1298.2022.03.033
|
[29] |
LIU Y, LIU B L, LEI J L, et al. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems[J]. Chin J Oceanol Limnol, 2017, 35(4): 912-920. doi: 10.1007/s00343-017-6051-3
|
[30] |
车宗龙. 方形圆弧角养殖池径深比对流场特性及集排污的影响研究[D]. 大连: 大连海洋大学, 2022: 26-39.
|
[31] |
TIMMONS M B, SUMMERFELT S T, VINCI B J. Review of circular tank technology and management[J]. Aquac Engin, 1998, 18(1): 51-69. doi: 10.1016/S0144-8609(98)00023-5
|
[32] |
任效忠, 王江竹, 薛博茹, 等. 方形圆弧角海水养殖池排污特性的试验研究[J]. 海洋环境科学, 2021, 40(5): 790-797. doi: 10.12111/j.mes.20200166
|
[33] |
OCA J, MASALO I. Flow pattern in aquaculture circular tanks: Influence of flow rate, water depth, and water inlet & outlet features[J]. Aquac Engin, 2013, 52: 65-72. doi: 10.1016/j.aquaeng.2012.09.002
|
[34] |
GORLE J, TERJESEN B F, MOTA V C, et al. Water velocity in commercial RAS culture tanks for Atlantic salmon smolt production[J]. Aquac Engin, 2018, 81: 89-100. doi: 10.1016/j.aquaeng.2018.03.001
|
[35] |
任效忠, 张倩, 姜恒志, 等. 单通道方形海水养殖池基于流场均匀性的结构优化研究[J]. 海洋环境科学, 2021, 40(2): 287-293. doi: 10.12111/j.mes.20190288
|
[36] |
HVAS M, FOLKEDAL O, OPPEDAL F. Fish welfare in offshore salmon aquaculture[J]. Rev Aquac, 2021, 13(2): 836-852. doi: 10.1111/raq.12501
|
[37] |
TIMMERHAUS G, LAZADO C C, CABILLON N R, et al. The optimum velocity for Atlantic salmon post-smolts in RAS is a compromise between muscle growth and fish welfare[J]. Aquaculture, 2021, 532: 736076. doi: 10.1016/j.aquaculture.2020.736076
|
[38] |
王婕, 张佳, 张旭, 等. 不同流速对许氏平鲉生长及行为的影响[J]. 水生生物学报, 2023, 47(06): 973-981. doi: 10.7541/2023.2022.0363
|
[39] |
陈震雷. 循环水养殖中水流速度对大口黑鲈幼鱼的影响研究[D]. 杭州: 浙江大学, 2021: 30-33.
|
[40] |
LI Z S, GUO X Y, CUI M C. Sensitive analyses of flow property to turbulence model in swirls simulation within aquaculture tanks[J]. Ocean Engin, 2024, 291: 116425. doi: 10.1016/j.oceaneng.2023.116425
|
[41] |
湛含辉, 成浩, 刘建文, 等. 二次流原理[M]: 长沙: 中南大学出版社, 2006: 16-18.
|
[42] |
李彬涛. 进水结构对圆形循环水养殖池流场及颗粒物集聚效果的影响[D]. 武汉: 华中农业大学, 2024:
|
[43] |
顾川川, 张宇雷. 国内外工厂化养殖鱼池流态研究进展概述[J]. 渔业现代化, 2013, 40(6): 10-14,29. doi: 10.3969/j.issn.1007-9580.2013.06.003
|