QIAN Zhenjia, XU Jincheng, ZHANG Chenglin, YU Youbin, LIU Huang. Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus[J]. South China Fisheries Science, 2023, 19(2): 89-97. DOI: 10.12131/20220153
Citation: QIAN Zhenjia, XU Jincheng, ZHANG Chenglin, YU Youbin, LIU Huang. Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus[J]. South China Fisheries Science, 2023, 19(2): 89-97. DOI: 10.12131/20220153

Effect of different flow velocity on tail beat frequency and blood physiology of Plectropomus leopardus

More Information
  • Received Date: May 28, 2022
  • Revised Date: August 02, 2022
  • Accepted Date: September 08, 2022
  • Available Online: September 12, 2022
  • Water flow is one of the important ecological factors that affect the physiology and growth of fish. Studying the stress level changes of Plectropomus leopardus under flow velocity stress, and clarifying the maximum flow velocity that the fish can tolerate, can provide a theoretical basis for the cage culture site selection, intensive flow culture and deep-sea aquaculture working vessel. Taking P. leopardus [Body length (11.38±1.48) cm, body mass (34.71±11.57) g] as the research object, we designed a hydrostatic control group (0 cm·s−1 or 0 BL·s−1, body length·s−1) and three experimental groups (11.4, 22.8 and 34.2 cm·s−1 corresponding to 1, 2 and 3 BL·s−1) by a self-made fish swimming experimental device, so as to explore the effect of 40-min water flow stimulation on its tail beat frequency change, blood glucose, lactic acid and cortisol content in blood. The results show that there was a linear correlation between the tail beat frequency and water velocity. The blood glucose and cortisol levels increased linearly but the lactic acid increased non-linearly with increasing tail beat times. The flow rate over 2 BL·s−1 resulted in a significant increase in the cortisol in P. leopardus blood (P<0.05). When the flow rate reached 3 BL·s−1, lactic acid and blood glucose levels increased significantly (P<0.05). In conclusion, the upper limit of tolerance to flow velocity of P. leopardus was 2 BL·s−1. When the flow velocity of aquaculture water was higher than 2 BL·s−1, the stress level and metabolic load increased significantly and the stress effect appeared (P<0.05). The results provide references for the aquaculture working vessel sloshing suppression and the site selection of cage aquaculture waters.
  • [1]
    FRISCH A J, CAMERON D S, PRATCHETT M S, et al. Erratum to: key aspects of the biology, fisheries and management of coral grouper[J]. Rev Fish Biol Fish, 2016, 26: 303-325. doi: 10.1007/s11160-016-9427-0
    [2]
    涂志刚, 蒋玉峰, 邱名毅. 三亚崖州区豹纹鳃棘鲈养殖现状与发展建议[J]. 中国水产, 2019(12): 42-43.
    [3]
    徐皓, 谌志新, 蔡计强, 等. 我国深远海养殖工程装备发展研究[J]. 渔业现代化, 2016, 43(3): 1-6. doi: 10.3969/j.issn.1007-9580.2016.03.001
    [4]
    周可欣, 文鑫, 邓成, 等. 豹纹鳃棘鲈体色变异的色素细胞差异分析[J]. 水生生物学报, 2021, 45(5): 1164-1170. doi: 10.7541/2021.2020.291
    [5]
    王辉, 时慧中. 不同光照强度对豹纹鳃棘鲈生长和体色变化的影响[J]. 河北渔业, 2021(5): 4-8. doi: 10.3969/j.issn.1004-6755.2021.05.002
    [6]
    尤颖哲, 蔡葆青, 陈何东, 等. 豹纹鳃棘鲈人工育苗技术[J]. 中国水产, 2009(11): 41-43. doi: 10.3969/j.issn.1002-6681.2009.11.023
    [7]
    XIA S D, SUN J H, LI M, et al. Influence of dietary protein level on growth performance, digestibility andactivity of immunity-related enzymes of leopard coral grouper, Plectropomus leopardus (Lacépède, 1802)[J]. Aquac Nutr, 2020, 26: 242-247. doi: 10.1111/anu.12985
    [8]
    ZHU X W, HAO R J, ZHANG J P, et al. Improved growth performance, digestive ability, antioxidant capacity, immunity and Vibrio harveyi resistance in coral trout (Plectropomus leopardus) with dietary vitamin C[J]. Aquac Rep, 2022, 24: 101111. doi: 10.1016/j.aqrep.2022.101111
    [9]
    张杰, 王永波, 李向民, 等. 工厂化养殖条件下豹纹鳃棘鲈消化系统组织学的观察[J]. 海洋渔业, 2015, 37(3): 233-243. doi: 10.3969/j.issn.1004-2490.2015.03.005
    [10]
    QU M, DING S X, XU X J, et al. Ontogenetic development of the digestive system and growth in coral trout (Plectropomus leopardus)[J]. Aquaculture, 2012, 334/335/336/337: 132-141.
    [11]
    姚学良, 徐晓丽, 张振奎, 等. 豹纹鳃棘鲈病原鳗利斯顿氏菌的分离鉴定及生物学特性研究[J]. 中国海洋大学学报 (自然科学版), 2015, 45(5): 39-45.
    [12]
    徐晓丽, 邵蓬, 李灏, 等. 豹纹鳃棘鲈致病性哈维氏弧菌的分离鉴定与系统发育分析[J]. 华中农业大学学报, 2014, 33(4): 112-118.
    [13]
    姚学良, 蔡琰, 张振奎, 等. 温度对豹纹鳃棘鲈幼鱼呼吸代谢的影响[J]. 天津农学院学报, 2014, 21(1): 23-27. doi: 10.3969/j.issn.1008-5394.2014.01.008
    [14]
    杨明秋, 王永波, 符书源, 等. 温度、盐度和pH值对豹纹鳃棘鲈早期发育的影响[J]. 热带生物学报, 2012, 3(2): 104-108. doi: 10.3969/j.issn.1674-7054.2012.02.004
    [15]
    尤宏争, 孙志景, 张勤, 等. 盐度对豹纹鳃棘鲈幼鱼摄食生长及体成分的影响[J]. 大连海洋大学学报, 2013, 28(1): 89-93. doi: 10.3969/j.issn.2095-1388.2013.01.017
    [16]
    高进, 王永波, 刘金叶, 等. 豹纹鳃棘鲈差异流速下肝脏转录组分析[J]. 南方水产科学, 2022, 18(1): 107-117. doi: 10.12131/20210125
    [17]
    HOU X G, MEI J X, GUO Z S. Shelter selection by juvenile Pacific abalone (Haliotis discus hannai Ino) as a function of food distribution and water flow velocity[J]. Aquac Res, 2020, 51(10): 4113-4121. doi: 10.1111/are.14754
    [18]
    彭士明, 施兆鸿, 李杰, 等. 运输胁迫对银鲳血清皮质醇、血糖、组织中糖元及乳酸含量的影响[J]. 水产学报, 2011, 35(6): 831-837.
    [19]
    SKOV P V, LUND I, PARGANA A M. No evidence for a bioenergetic advantage from forced swimming in rainbow trout under a restrictive feeding regime[J]. Front Physiol, 2015, 6: 31.
    [20]
    袁喜, 黄应平, 郭文韬, 等. 温度和重复运动对中华鲟游泳行为的影响[J]. 水生态学杂志, 2018, 39(1): 63-68.
    [21]
    DONLEY J M, DICKSON K A. Swimming kinematics of juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus)[J]. J Exp Biol, 2000, 203: 3103-3116. doi: 10.1242/jeb.203.20.3103
    [22]
    LAUDER B. Speed effects on midline kinematics during steady undulatory swimming of largemouth bass, Micropterus salmoides[J]. J Exp Biol, 1995, 198(Pt2): 582-602.
    [23]
    龚丽, 吴一红, 白音包力皋, 等. 草鱼幼鱼游泳能力及游泳行为试验研究[J]. 中国水利水电科学研究院学报, 2015, 13(3): 211-216.
    [24]
    涂志英, 袁喜, 王从锋, 等. 亚成体巨须裂腹鱼游泳能力及活动代谢研究[J]. 水生生物学报, 2012, 36(4): 682-688.
    [25]
    李丹, 林小涛, 李想, 等. 水流对杂交鲟幼鱼游泳行为的影响[J]. 淡水渔业, 2008, 38(6): 46-51. doi: 10.3969/j.issn.1000-6907.2008.06.010
    [26]
    王瑶, 王从锋, 刘慧杰, 等. 鲢幼鱼运动能量代谢研究[J]. 水生态学杂志, 2019, 40(4): 101-107.
    [27]
    刘慧杰, 王从锋, 刘德富, 等. 不同运动状态下鳙幼鱼的游泳特性研究[J]. 南方水产科学, 2017, 13(2): 85-92. doi: 10.3969/j.issn.2095-0780.2017.02.011
    [28]
    PLAUT I. Effects of fin size on swimming performance, swimming behaviour and routine activity of zebrafish Danio rerio[J]. J Exp Biol, 2000, 203: 813-820. doi: 10.1242/jeb.203.4.813
    [29]
    柯森繁, 陈渴鑫, 罗佳, 等. 鲢顶流游泳速度与摆尾行为相关性分析[J]. 水产学报, 2017, 41(3): 401-406.
    [30]
    刘谢驿, 徐勐, 袁喜, 等. 鲢幼鱼非疲劳贴网及姿态转换行为研究[J]. 水生态学杂志, 2020, 41(4): 96-101. doi: 10.15928/j.1674-3075.2020.04.013
    [31]
    魏园杰. 两种典型鱼道布置下鲢鳙游泳行为与生理变化差异研究[D]. 宜昌: 三峡大学, 2021: 67-68.
    [32]
    虞顺年, 魏小岚, 韦芳三, 等. 不同运动强度对黑鲷生长、血清和肝脏抗氧化指标的影响[J]. 水生生物学报, 2018, 42(2): 255-263. doi: 10.7541/2018.032
    [33]
    刘谢驿. 开放与封闭水槽环境下草鱼幼鱼生理代谢及游泳特性研究[D]. 宜昌: 三峡大学, 2020: 55-56.
    [34]
    MILLIGAN C L. Metabolic recovery from exhaustive exercise in rainbow trout[J]. Comp Biochem Physiol A, 1995, 113(1): 51-60.
    [35]
    夏伟, 付世建, 彭姜岚, 等. 力竭运动训练对锦鲫幼鱼无氧代谢能力的影响[J]. 重庆师范大学学报 (自然科学版), 2011, 28(4): 16-18, 22.
    [36]
    陈巨星, 孙祥明, 张元兴. 乳酸对海水鱼类细胞系CHSE生长和代谢的影响[J]. 华东理工大学学报 (自然科学版), 2005(3): 290-295.
    [37]
    徐力文, 苏友禄, 刘广锋, 等. 急性盐度胁迫下军曹鱼稚鱼应激反应的血清学指标[J]. 华南农业大学学报, 2007, 28(2): 91-94. doi: 10.3969/j.issn.1001-411X.2007.02.023
    [38]
    MOMMSEN T P, VIJAYAN M M, MOON T W. Cortisol in teleost dynamics, mechanisms of action, and metabolic regulation[J]. Rev Fish Biol Fish, 1999, 9(3): 211-268. doi: 10.1023/A:1008924418720
    [39]
    张云龙, 贺亚蒙, 袁娟, 等. 运输过程中水质和鱼类生理指标的变化及运输控制策略[J]. 水生生物学报, 2018, 42(2): 439-450. doi: 10.7541/2018.056
    [40]
    CHEN Z L, YE Z Y, JI M D, et al. Effects of flow velocity on growth and physiology of juvenile largemouth bass (Micropterus salmoides) in recirculating aquaculture systems[J]. Aquac Res, 2021, 52(7): 3093-3100. doi: 10.1111/are.15153
    [41]
    WENDELAAR B S E. The stress response in fish[J]. Physiol Rev, 1997, 77(3): 591-625. doi: 10.1152/physrev.1997.77.3.591
    [42]
    范雯, 刘永, 魏小岚, 等. 不同运动强度和训练时间对紫红笛鲷幼鱼血清生理生化指标的影响[J]. 海洋渔业, 2020, 42(5): 618-633. doi: 10.3969/j.issn.1004-2490.2020.05.010
    [43]
    LI X, JI L Q, WU L L, et al. Effect of flow velocity on the growth, stress and immune responses of turbot (Scophthalmus maximus) in recirculating aquaculture systems[J]. Fish Shellfish Immun, 2019, 86: 1169-1176. doi: 10.1016/j.fsi.2018.12.066
    [44]
    林听听, 刘鑫, 王昌勃, 等. 船舶噪声声压级对大黄鱼幼鱼游泳、摄食行为及免疫生理指标的影响[J]. 海洋渔业, 2020, 42(1): 61-72. doi: 10.3969/j.issn.1004-2490.2020.01.007
    [45]
    陈震雷. 循环水养殖中水流速度对大口黑鲈幼鱼的影响研究[D]. 杭州: 浙江大学, 2021: 30-33.
    [46]
    WOODWARD J J, SMITH L S. Exercise training and the stress response in rainbow trout, Salmo gairdneri Richardson[J]. J Fish Biol, 2010, 26(4): 435-447.
    [47]
    麦康森, 艾庆辉, 徐玮, 等. 水产养殖中的环境胁迫及其预防——营养学途径[J]. 中国海洋大学学报 (自然科学版), 2004, 34(5): 767-774.
    [48]
    JOHANSEN J L, MESSMER V, COKER D J, et al. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish[J]. Glob Chang Biol, 2013, 20(4): 1067-1074.
    [49]
    PRATCHETT M S, SCOTT M E, HEUPEL M R, et al. Latitudinal and seasonal variation in space use by a large, predatory reef fish, Plectropomus leopardus[J]. Funct Ecol, 2019, 33(4): 670-680. doi: 10.1111/1365-2435.13271
    [50]
    MEKUCHI M, SAKATA K, YAMAGUCHI T, et al. Trans-omics approaches used to characterise fish nutritional biorhythms in leopard coral grouper (Plectropomus leopardus)[J]. Sci Rep, 2017, 7(1): 9372. doi: 10.1038/s41598-017-09531-4

Catalog

    Article views (604) PDF downloads (36) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return