LIU Zikai, XU Youwei, CAI Yancong, SUN Mingshuai, ZHANG Kui, CHEN Zuozhi. Length-based assessment of Nemipterus bathybius in northern South China Sea[J]. South China Fisheries Science, 2024, 20(4): 24-33. DOI: 10.12131/20240034
Citation: LIU Zikai, XU Youwei, CAI Yancong, SUN Mingshuai, ZHANG Kui, CHEN Zuozhi. Length-based assessment of Nemipterus bathybius in northern South China Sea[J]. South China Fisheries Science, 2024, 20(4): 24-33. DOI: 10.12131/20240034

Length-based assessment of Nemipterus bathybius in northern South China Sea

More Information
  • Received Date: February 06, 2024
  • Revised Date: April 20, 2024
  • Accepted Date: May 08, 2024
  • Available Online: June 05, 2024
  • Yellowbelly threadfin bream (Nemipterus bathybius), an economically important demersal fish species in the northern South China Sea, has been overexploited in recent years. To provide technical support for the scientific management and sustainable utilization of N. bathybius stocks, based on the biological data of 3 059 individuals of N. bathybius collected during bottom trawl surveys in the northern South China Sea from 2014 to 2019, we assessed the stock status by using two assessment models [Length-based Bayesian biomass (LBB) and length-based spawning potential ratio (LBSPR)] under data-poor conditions. Results show that the asymptotic fork length (Linf), relative natural mortality (M/K), and 50% sexually mature body length (L50) of N. bathybius in the northern South China Sea from 2014 to 2019 were 23.7 cm, 2.33 and 11.76 cm, respectively. The LBB assessment results show that the relative biomass level (B/BMSY) and ratio of length of 50% of the individuals captured by the gear to optimal length-at-first-capture (Lc/Lc_opt) were 0.89 and 0.85, respectively, indicating that N. bathybius was experiencing moderate overfishing and growth overfishing. The LBSPR results show a spawning potential ratio (SPR) of 0.19, indicating that N. bathybius was experiencing overfishing. Uncertainty analysis of the priori parameters reveals that LBB and LBSPR results were extremely sensitive to the setting of Linf and sensitive to the setting of M/K. Therefore, the above two parameters should be set with caution when using LBB and LBSPR.

  • [1]
    陈再超, 刘继兴. 南海经济鱼类[M]. 广州: 广东科学与技术出版社, 1982: 184-188.
    [2]
    宁平. 中国金线鱼科鱼类分类、系统发育及动物地理学研究 [D]. 青岛: 中国科学院海洋研究所, 2012: 25-28.
    [3]
    王雪辉, 邱永松, 杜飞雁. 南海北部深水金线鱼生物学及最适开捕体长[J]. 应用生态学报, 2005(12): 2428-2434. doi: 10.3321/j.issn:1001-9332.2005.12.041
    [4]
    陈作志, 孔啸兰, 徐姗楠, 等. 北部湾深水金线鱼种群参数的动态变化[J]. 水产学报, 2012, 36(4): 584-591.
    [5]
    崔奕波. 鱼类生物能量学的理论与方法[J]. 水生生物学报, 1989, 13(4): 15. doi: 10.3321/j.issn:1000-3207.1989.04.003
    [6]
    李忠炉, 卢伙胜, 甘喜萍, 等. 北部湾口海域深水金线鱼生长和死亡研究[J]. 水产科学, 2009, 28(10): 556-562. doi: 10.3969/j.issn.1003-1111.2009.10.002
    [7]
    陈作志, 林昭进, 邱永松. 基于AHP的南海海域渔业资源可持续利用评价[J]. 自然资源学报, 2010, 25(2): 249-257. doi: 10.11849/zrzyxb.2010.02.009
    [8]
    张魁, 廖宝超, 许友伟, 等. 基于渔业统计数据的南海区渔业资源可捕量评估[J]. 海洋学报, 2017, 39(8): 25-33.
    [9]
    ZHANG K, CAI Y C, LIAO B C, et al. Population dynamics of threadfin porgy Evynnis cardinalis, an endangered species on the IUCN red list in the Beibu Gulf, South China Sea[J]. J Fish Biol, 2020, 97(2): 479-489. doi: 10.1111/jfb.14398
    [10]
    ZHANG K, GUO J Z, XU Y W, et al. Long-term variations in fish community structure under multiple stressors in a semi-closed marine ecosystem in the South China Sea[J]. Sci Total Environ, 2020, 745: 140892. doi: 10.1016/j.scitotenv.2020.140892
    [11]
    ZHANG K, LI J J, HOU G, et al. Length-based assessment of fish stocks in a data-poor, jointly exploited (China and Vietnam) fishing ground, northern South China Sea[J]. Front Mar Sci, 2021, 8: 718052. doi: 10.3389/fmars.2021.718052
    [12]
    耿喆, 朱江峰, 夏萌, 等. 数据缺乏条件下的渔业资源评估方法研究进展[J]. 海洋湖沼通报, 2018, 164(5): 130-137.
    [13]
    刘维达, 林昭进, 江艳娥, 等. 南海北部陆架区底层渔业资源的空间分布特征[J]. 热带海洋学报, 2011, 30(5): 95-103. doi: 10.3969/j.issn.1009-5470.2011.05.013
    [14]
    MILDENBERGER T K, TAYLOR M H, WOLFF M. TropFishR: an R package for fisheries analysis with length-frequency data[J]. Methods Ecol Evol, 2017, 8(11): 1520-1527. doi: 10.1111/2041-210X.12791
    [15]
    PAULY D. Some simple methods for the assessment of tropical fish stocks. FAO Fisheries Technical Paper No. 234[M]. Rome: FAO, 1983: 50-57.
    [16]
    PAULY D, MUNRO J L. Once more on the comparison of growth in fish and invertebrates[J]. Fishbyte, 1984, 2(1): 1-21.
    [17]
    PAULY D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks[J]. ICES J Mar Sci, 1980, 39(2): 175-192. doi: 10.1093/icesjms/39.2.175
    [18]
    THEN A Y, HOENIG J M, HALL N G, et al. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species[J]. ICES J Mar Sci, 2015, 72(1): 82-92. doi: 10.1093/icesjms/fsu136
    [19]
    YU Y, ZHANG H R, JIN J B, et al. Trends of sea surface temperature and sea surface temperature fronts in the South China Sea during 2003–2017[J]. Acta Oceanol Sin, 2019, 38(4): 106-115. doi: 10.1007/s13131-019-1416-4
    [20]
    VILA Y, SILVA L, TORRES M A, et al. Fishery, distribution pattern and biological aspects of the common European squid Loligo vulgaris in the Gulf of Cadiz[J]. Fish Res, 2010, 106(2): 222-228. doi: 10.1016/j.fishres.2010.06.007
    [21]
    PRINCE J, VICTOR S, KLOULCHAD V, et al. Length based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau[J]. Fish Res, 2015, 171: 42-58. doi: 10.1016/j.fishres.2015.06.008
    [22]
    PONS M, COPE J M, KELL L T. Comparing performance of catch-based and length-based stock assessment methods in data-limited fisheries[J]. Can J Fish Aquat Sci, 2020, 77(6): 1026-1037. doi: 10.1139/cjfas-2019-0276
    [23]
    ZHANG K, ZHANG J, ZHANG P, et al. This is what we know: assessing the stock status of the data-poor skipjack tuna (Katsuwonus pelamis) fishery in the South China Sea[J]. Front Mar Sci, 2023, 10: 1095411. doi: 10.3389/fmars.2023.1095411
    [24]
    PALOMARES M L D, FROESE R, DERRICK B, et al. A preliminary global assessment of the status of exploited marine fish and invertebrate populations[R]. Vancouver: The University of British Columbia, 2018: 14-32.
    [25]
    FROESE R, WINKER H, CORO G, et al. A new approach for estimating stock status from length frequency data[J]. ICES J Mar Sci, 2019, 76(1): 350-351. doi: 10.1093/icesjms/fsy139
    [26]
    HORDYK A, ONO K, VALENCIA S, et al. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries[J]. ICES J Mar Sci, 2014, 72(1): 217-231.
    [27]
    WALTERS C J , MARTELL S J D. Fisheries ecology and management[M]. Princeton: Princeton University Press, 2004: 155-157.
    [28]
    ALAM M S, LIU Q, SCHNEIDER P, et al. Length-based stock assessment for the data-poor Bombay duck fishery from the Northern Bay of Bengal Coast, Bangladesh[J]. J Mar Sci Eng, 2022, 10(2): 213. doi: 10.3390/jmse10020213
    [29]
    RICHARD K, OUSMANE S, FENG W, et al. Length-based assessment methods for the conservation of a pelagic shark, Carcharhinus falciformis from the Tropical Pacific Ocean[J]. Fish Basel, 2022, 7(4): 184.
    [30]
    HORDYK A, ONO K, SAINSBURY K, et al. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio[J]. ICES J Mar Sci, 2014, 72(1): 204-216.
    [31]
    DOWLING N A, DICHMONT C M, HADDON M, et al. Empirical harvest strategies for data-poor fisheries: a review of the literature[J]. Fish Res, 2015, 171: 141-153. doi: 10.1016/j.fishres.2014.11.005
    [32]
    夏恒睿, 王琨, 董秀强, 等. 基于体长-繁殖潜力比方法的海州湾小黄鱼资源状态评估[J]. 中国海洋大学学报(自然科学版), 2022, 52(12): 25-32.
    [33]
    GULLAND J A. Fish stock assessment: a manual of basic method[M]. New York: Wiley, 1983: 87-125.
    [34]
    XU Y W, ZHANG P, PANHWAR S K, et al. The initial assessment of an important pelagic fish, Mackerel scad, in the South China Sea using data-poor length-based methods[J]. Mar Coast Fish, 2023, 15(5): 10258. doi: 10.1002/mcf2.10258
    [35]
    LIAO B C, XU Y W, SUN M S, et al. Performance comparison of three data-poor methods with various types of data on assessing southern Atlantic albacore fishery[J]. Front Mar Sci, 2022, 9: 825461. doi: 10.3389/fmars.2022.825461
    [36]
    CONOVER D O, MUNCH S B. Sustaining fisheries yields over evolutionary time scales[J]. Science, 2002, 297(5578): 94-106. doi: 10.1126/science.1074085
    [37]
    耿平, 张魁, 陈作志, 等. 北部湾蓝圆鲹生物学特征及开发状态的年际变化[J]. 南方水产科学, 2018, 14(6): 1-9. doi: 10.12131/20180106
    [38]
    史登福, 张魁, 蔡研聪, 等. 南海北部带鱼群体结构及生长、死亡和性成熟参数估计[J]. 南方水产科学, 2020, 16(5): 51-59. doi: 10.12131/20200055
    [39]
    HOMMIK K, FITZGERALD C J, KELLY F, et al. Dome-shaped selectivity in LB-SPR: length-based assessment of data-limited inland fish stocks sampled with gillnets[J]. Fish Res, 2020, 229: 105574. doi: 10.1016/j.fishres.2020.105574
    [40]
    王雪辉, 杜飞雁, 邱永松. 南海北部主要经济鱼类体长与体重关系[J]. 台湾海峡, 2006(2): 262-266.
    [41]
    王雪辉, 邱永松, 杜飞雁, 等. 基于长度贝叶斯生物量法估算北部湾二长棘鲷种群参数[J]. 水产学报, 2020, 44(10): 1654-1662.
    [42]
    ZHANG K, ZHANG J, SHI D F, et al. Assessment of coral reef fish stocks from the Nansha Islands, South China Sea, using length-based Bayesian biomass estimation[J]. Front Mar Sci, 2021, 7: 610707. doi: 10.3389/fmars.2020.610707
  • Related Articles

    [1]HE Zheng, ZHU Changbo, SU Jiaqi. Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities of Litopenaeus vannamei under SO4 2−/Cl stress in low saline water[J]. South China Fisheries Science, 2025, 21(2): 118-126. DOI: 10.12131/20240231
    [2]MA Bin, SU Hang, XU Yongjiang, CUI Aijun, JIANG Yan, YAN Han, FENG Yuan, GONG Yanjun, FENG Dejun. Effects of alginate oligosaccharide on growth performance, physiological indicators and intestinal morphology of Lateolabrax maculatus juvenile[J]. South China Fisheries Science, 2024, 20(3): 76-84. DOI: 10.12131/20240022
    [3]BAO Yuhang, ZHANG Xinyu, YIN Shangjun, ZHANG Haiqi, XU Jiehao. Effects of Chinese herbal compound on intestinal microbiota and non-specific immune function of Pelodiscus sinensis[J]. South China Fisheries Science, 2023, 19(5): 86-94. DOI: 10.12131/20230069
    [4]TIAN Yu, JIE Yukun, ZENG Xiangbing, YUE Yan, LIU Guangxin, CHENG Changhong, MA Hongling, GUO Zhixun. Effect of density on antioxidant and nonspecific immunity of mud crab (Scylla paramamosain)[J]. South China Fisheries Science, 2023, 19(3): 60-67. DOI: 10.12131/20220312
    [5]YUAN Zhongjin, CEN Jianwei, LI Laihao, YANG Xianqing, HUANG Hui, WEI Ya, HAO Shuxian, ZHAO Yongqiang, WANG Yueqi, LIN Zhi. Effect of low-temperature acclimation on survival, non-specific immune and antioxidant indexes of Epinephelus fuscoguttatus ♀×E. lanceolatus[J]. South China Fisheries Science, 2022, 18(6): 118-126. DOI: 10.12131/20220042
    [6]HAN Chunyan, ZHENG Qingmei, CHEN Guidan, LIU Lixia. Effect of ammonia-N stress on non-specific immunity of tilapia (Oreochromis niloticus×O.areus)[J]. South China Fisheries Science, 2014, 10(3): 47-52. DOI: 10.3969/j.issn.2095-0780.2014.03.007
    [7]ZHANG Jiarun, LIN Heizhao, HUANG Zhong, NIU Jin, ZHOU Falin, CHEN Xu, WANG Yun, XIA Dongmei. Effects of plant proteins supplemented with amino acids on growth and non-specific immunity of Penaeus monodon[J]. South China Fisheries Science, 2013, 9(5): 44-50. DOI: 10.3969/j.issn.2095-0780.2013.05.008
    [8]LIN Heizhao, YUAN Fenghua, LI Zhuojia, LU Xin, YANG Qibin, CHEN Xu. Effects of dietary photosynthetic bacteria PS2 on growth performance, digestive enzymes and nonspecific immune enzymes of sea bass (Lates calcarifer)[J]. South China Fisheries Science, 2010, 6(1): 25-29. DOI: 10.3969/j.issn.1673-2227.2010.01.005
    [9]WU Lan, XIE Jun, WANG Guangjun, YU Deguang, HU Chaoying, NIU Jifeng. Effect of the metalloprotease on growth performance, digestibility and non-specific immune of hybrid tilapia Oreochromis niloticus × O.aureus[J]. South China Fisheries Science, 2007, 3(3): 8-13.
    [10]XIE Yirong, WU Ruiquan, XIE Jun, YE Fuliang, CHEN Gang, WANG Guangjun, GUAN Shengjun. Effect of dietary vitamin C on growth and non-specific immunity of largemouth bass, Micropterus salmoides[J]. South China Fisheries Science, 2006, 2(3): 40-45.
  • Cited by

    Periodical cited type(11)

    1. 李兵部,傅建军,陶易凡,强俊,徐跑. 基于D-loop序列和微卫星标记的4个黄颡鱼群体的遗传变异分析. 黑龙江畜牧兽医. 2024(04): 115-127 .
    2. 胡玉婷,凌俊,江河,汪焕,潘庭双,段国庆,周华兴,杨敏,李彤. 苏皖地区中华绒螯蟹养殖群体微卫星遗传多样性的评估. 渔业科学进展. 2024(06): 178-187 .
    3. 李大命,杨子萍,刘燕山,谷先坤,殷稼雯,蔡永久,唐晟凯,张彤晴. 基于线粒体COI序列的江淮下游湖泊鲢群体遗传多样性和遗传结构分析. 淡水渔业. 2023(04): 3-11 .
    4. 宋立民,王娜,郑英珍,丁子元,刘肖莲,姜巨峰,张韦,耿绪云. 基于微卫星标记技术的5个黄颡鱼群体遗传多样性分析. 经济动物学报. 2023(02): 101-108 .
    5. 葛锐,强壮,聂竹兰,李丽,魏杰. 基于高通量转录组测序的斑重唇鱼SSR分布及序列特征分析. 南方农业学报. 2023(03): 806-814 .
    6. 邹利,王金龙,李传武,王冬武,曾春芳,刘明求,刘丽,谢敏,曾鸣. 稻田适养品种呆鲤的遗传多样性分析. 水产科学. 2023(05): 795-804 .
    7. 黄皓,范嗣刚,王鹏飞,陈佳,赵超,闫路路,邱丽华,潘滢. 基于微卫星标记对6个花鲈群体的遗传多样性分析. 南方水产科学. 2022(01): 99-106 . 本站查看
    8. 胡玉婷,凌俊,江河,汪焕,潘庭双,周华兴. 中华绒螯蟹4个养殖群体遗传多样性与遗传结构分析. 江苏农业科学. 2022(16): 54-59 .
    9. 胡玉婷,侯冠军. 安徽省翘嘴鲌野生群体的遗传多样性分析. 生物学杂志. 2022(04): 79-83 .
    10. 罗宇婷,方弟安,周彦锋,徐东坡,彭云鑫,彭飞,张桂宁,刘凯,尤洋. 基于微卫星标记对长江下游鲢遗传多样性现状的分析. 南方水产科学. 2021(06): 48-57 . 本站查看
    11. 张显波,傅建军,胡锦丽,朱文彬,闵倩雯,赵飞,吴俣学,董在杰. 基于D-loop序列和SSR的从江田鱼与6个鲤群体的遗传分析. 贵州农业科学. 2021(12): 76-85 .

    Other cited types(5)

Catalog

    Article views (129) PDF downloads (67) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return