TIAN Yu, JIE Yukun, ZENG Xiangbing, YUE Yan, LIU Guangxin, CHENG Changhong, MA Hongling, GUO Zhixun. Effect of density on antioxidant and nonspecific immunity of mud crab (Scylla paramamosain)[J]. South China Fisheries Science, 2023, 19(3): 60-67. DOI: 10.12131/20220312
Citation: TIAN Yu, JIE Yukun, ZENG Xiangbing, YUE Yan, LIU Guangxin, CHENG Changhong, MA Hongling, GUO Zhixun. Effect of density on antioxidant and nonspecific immunity of mud crab (Scylla paramamosain)[J]. South China Fisheries Science, 2023, 19(3): 60-67. DOI: 10.12131/20220312

Effect of density on antioxidant and nonspecific immunity of mud crab (Scylla paramamosain)

More Information
  • Received Date: December 06, 2022
  • Revised Date: January 08, 2023
  • Accepted Date: February 07, 2023
  • Available Online: February 18, 2023
  • Density stress has a negative impact on the immune and antioxidant functions of aquatic animals. In order to improve the potential production of mud crab (Scylla paramamosain) and provide a theoretical basis for its aquaculture development, we cultured the mud crabs for 72 h at three different densities: 8 ind·m−2 (Low density group), 16 ind·m−2 (Medium density group), and 32 ind·m−2 (High density group) to study the effects of density on the antioxidant and immune capacity of mud crabs. The results of antioxidant enzyme activity show that the activities of catalase (CAT) and superoxide dismutase (SOD) in the high density group were significantly higher than those in the low density and medium density groups (P<0.05), but there was no significant difference in the glutathione peroxidase (GSH-Px) activity among the groups. Additionally, the malondialdehyde (MDA) content in the high density group was significantly higher than that in the low density and medium density groups. The activities of acid phosphatase (ACP), alkaline phosphatase (AKP) and lysozyme (LZM) in the high density group were significantly lower than those in the low density and medium density groups (P<0.05), but there was no significant difference between the medium density group and the low density group. The real-time PCR results indicate that the heat shock protein 70 (HSP70) expression level in the high density group decreased first and then increased, significantly lower than that in low density and medium density groups from 6th hour to 48th hour (P<0.05). The expression level of Caspase 3 in the high density group increased significantly after 6 h and decreased gradually after reaching the maximum level at 24th hour, but was always significantly higher than that in the low density group (P<0.05). In conclusion, high density culture can cause oxidative damage, leading to the decline of immunity of mud crabs. The stock density of 16 ind·m−2 has no significant effects on the antioxidant and immune abilities of mud crabs.
  • [1]
    LUPATSCH I, SANTOS G A, SCHRAMA J W, et al. Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax[J]. Aquaculture, 2010, 298(3): 245-250.
    [2]
    GAO Y, HE Z L, VECTOR H, et al. Effect of stocking density on growth, oxidative stress and hsp 70 of Pacific white shrimp Litopenaeus vannamei[J]. Turkish J Fish Aquat Sci, 2017, 17(5): 877-884.
    [3]
    WYBAN J A, LEE C S, SATO V T, et al. Effect of stocking density on shrimp growth rates in manure-fertilized ponds[J]. Aquaculture, 1987, 61(1): 23-32. doi: 10.1016/0044-8486(87)90334-6
    [4]
    HENGSAWAT K, WARD F J, JARURATJAMORN P. The effect of stocking density on yield, growth and mortality of African catfish (Clarias gariepinus Burchell 1822) cultured in cages[J]. Aquaculture, 1997, 152(1): 67-76.
    [5]
    BOLASINA S, TAGAWA M, YAMASHITA Y, et al. Effect of stocking density on growth, digestive enzyme activity and cortisol level in larvae and juveniles of Japanese flounder, Paralichthys olivaceus[J]. Aquaculture, 2006, 259(1): 432-443.
    [6]
    范文浩, 方刘, 周锦, 等. 养殖密度对克氏原螯虾生长及消化酶、免疫酶活性的影响[J]. 水产科学, 2021, 40(2): 261-266.
    [7]
    张海恩, 何玉英, 李健, 等. 密度胁迫对中国对虾幼虾生长、抗氧化系统功能及水质指标的影响[J]. 渔业科学进展, 2020, 41(2): 140-149.
    [8]
    LIU G, ZHU S M, LIU D Z, et al. Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system[J]. Fish Shellfish Immunol, 2017, 67: 19-26. doi: 10.1016/j.fsi.2017.05.038
    [9]
    宋黎黎. 越冬暂养对中华绒螯蟹生长、生理及品质的影响[D]. 上海: 上海海洋大学, 2021: 20-26
    [10]
    毛振方. 池塘养殖密度对中华绒螯蟹 (Eriocheir sinensis) 生长性能和养殖水环境的影响[D]. 南昌: 南昌大学, 2019: 23-25.
    [11]
    农业农村部渔业渔政管理局全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 22-23.
    [12]
    GUO Z X, HE J G, XU H D, et al. Pathogenicity and complete genome sequence analysis of the mud crab dicistrovirus-1[J]. Virus Res, 2013, 171(1): 8-14. doi: 10.1016/j.virusres.2012.10.002
    [13]
    许明珠, 张琴, 董兰芳, 等. 不同糖源对拟穴青蟹仔蟹的生长、体成分及消化酶的影响[J]. 水产科学, 2020, 39(2): 175-181.
    [14]
    张林姿, 赵明, 张凤英, 等. 拟穴青蟹CYP302a1基因的克隆及表达模式分析[J]. 海洋渔业, 2021, 43(1): 31-41.
    [15]
    陈小龙, 程长洪, 邓益琴, 等. 拟穴青蟹致病性副溶血弧菌分离鉴定及药敏试验[J]. 南方农业学报, 2020, 51(11): 2846-2855.
    [16]
    CHENG C H, LIU X Z, MA H L, et al. The role of caspase 3 in the mud crab (Scylla paramamosain) after Vibrio parahaemolyticus infection[J]. Fish Shellfish Immunol, 2021, 118: 213-218. doi: 10.1016/j.fsi.2021.09.010
    [17]
    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [18]
    WANG W N, ZHOU J, WANG P, et al. Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress[J]. Comp Biochem Physiol C, 2009, 150(4): 428-435.
    [19]
    曾祥兵, 董宏标, 韦政坤, 等. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响[J]. 南方水产科学, 2021, 17(4): 49-57.
    [20]
    FRIDOVICH I. Superoxide dismutases: an adaptation to a paramagnetic gas[J]. J Biol Chem, 1989, 264(14): 7761-7764. doi: 10.1016/S0021-9258(18)83102-7
    [21]
    HE L, HE T, FARRAR S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cell Physiol Biochem, 2017, 44(2): 532-553. doi: 10.1159/000485089
    [22]
    王新. 稻蟹养殖模式下不同放养密度对中华绒螯蟹生长、营养品质及抗氧化能力的影响[D]. 长春: 吉林农业大学, 2021: 43-44.
    [23]
    陈勇. 饲养密度对克氏原螯虾成活率和肝胰腺三种免疫酶的影响[J]. 湖北农业科学, 2016, 55(16): 4237-4240.
    [24]
    JIE Y K, CHENG C H, WANG L C, et al. Hypoxia-induced oxidative stress and transcriptome changes in the mud crab (Scylla paramamosain)[J]. Comp Biochem Physiol C, 2021, 245: 109039.
    [25]
    TSIKAS D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges[J]. Anal Biochem, 2017, 524: 13-30. doi: 10.1016/j.ab.2016.10.021
    [26]
    于赫男. 环境胁迫对罗氏沼虾和凡纳滨对虾行为、生长及生理活动的影响[D]. 广州: 暨南大学, 2007: 34-44.
    [27]
    宋志飞, 温海深, 赵艳飞, 等. 流水养殖条件下养殖密度对俄罗斯鲟幼鱼非特异性免疫的影响[J]. 广西科学, 2017, 24(4): 389-395.
    [28]
    HUSSAIN S, SLIKKER W, ALI S F. Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection[J]. Neurochem Int, 1996, 29(2): 145-152. doi: 10.1016/0197-0186(95)00114-X
    [29]
    倪金金, 王裕玉, 徐钢春, 等. 养殖密度对池塘工程化循环水养殖大口黑鲈抗氧化力、组织结构及应激基因表达的影响[J]. 中国水产科学, 2020, 27(6): 660-670.
    [30]
    彭士明, 施兆鸿, 孙鹏, 等. 养殖密度对银鲳幼鱼生长及组织生化指标的影响[J]. 生态学杂志, 2010, 29(7): 1371-1376.
    [31]
    王天神, 周鑫, 赵朝阳, 等. 不同温度条件下克氏原螯虾免疫酶活性变化[J]. 江苏农业科学, 2012, 40(12): 239-241.
    [32]
    周素琴. 环境胁迫对养殖锯缘青蟹主要免疫因子的影响[D]. 青岛: 中国海洋大学, 2006: 35-40.
    [33]
    黄永春, 郑伟刚, 黎中宝, 等. 凡纳滨对虾幼体不同培育密度对水质、仔虾生长、免疫和抗逆性能的影响[J]. 厦门大学学报 (自然科学版), 2020, 59(6): 947-953.
    [34]
    MONTERO D, IZQUIERDO M S, TORT L, et al. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles[J]. Fish Physiol Biochem, 1999, 20(1): 53-60. doi: 10.1023/A:1007719928905
    [35]
    刘树青, 江晓路, 牟海津, 等. 免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J]. 海洋与湖沼, 1999(3): 278-283.
    [36]
    MAGNADOTTIR B. Immunological control of fish diseases[J]. Mar Biotechnol, 2010, 12(4): 361-379. doi: 10.1007/s10126-010-9279-x
    [37]
    黄东科. 温度、盐度、密度和饵料对波纹龙虾存活、摄食和生长的影响[D]. 湛江: 广东海洋大学, 2014: 48-49.
    [38]
    姚成杰, 刘佳珺, 林振烔, 等. 红螯光壳螯虾Hsp70基因的特征及其在热应激下的表达[J]. 集美大学学报 (自然科学版), 2021, 26(4): 289-298.
    [39]
    LIU B L, FEI F, LI X T, et al. Effects of stocking density on stress response, innate immune parameters, and welfare of turbot (Scophthalmus maximus)[J]. Aquac Int, 2019, 27(6): 1599-1612. doi: 10.1007/s10499-019-00413-2
    [40]
    ROBERTS R J, AGIUS C, SALIBA C, et al. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review[J]. J Fish Dis, 2010, 33(10): 789-801. doi: 10.1111/j.1365-2761.2010.01183.x
    [41]
    CHENG C H, MA H L, DENG Y Q, et al. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in the mud crab (Scylla paramamosain) induced by cadmium exposure[J]. Chemosphere, 2021, 263: 128277. doi: 10.1016/j.chemosphere.2020.128277
    [42]
    DONG H B, ZENG X B, WANG W H, et al. Protection of teprenone against anesthetic stress in gills and liver of spotted seabass Lateolabrax maculatus[J]. Aquaculture, 2022, 557: 738333. doi: 10.1016/j.aquaculture.2022.738333
    [43]
    LIN W, LI L, CHEN J, et al. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella)[J]. Fish Shellfish Immunol, 2018, 80: 540-545. doi: 10.1016/j.fsi.2018.06.050
  • Related Articles

    [1]FENG Yuwei, SU Xinguo, SUN Huiming, LIN Haopeng, CHEN Qionghua, SHU Hu. Identification and denitrification performance of a high ammonia nitrogen-resistant aerobic denitrifying bacteria[J]. South China Fisheries Science, 2023, 19(6): 107-115. DOI: 10.12131/20230079
    [2]XIAO Bo, ZHOU Shengjie, WANG Yinggang, FU Zhengyi, FANG Wei, YU Gang, MA Zhenhua. Effects of fermented Astragalus membranaceus on growth, digestion, immune function and ammonia nitrogen resistance of Epinephelus fuscoguttatus[J]. South China Fisheries Science, 2023, 19(2): 161-169. DOI: 10.12131/20220197
    [3]HU Xiaojuan, WEN Guoliang, TIAN Yajie, SU Haochang, XU Wujie, XU Yu, XU Yunna, CAO Yucheng. Removal effect of strain NB5 on ammonia nitrogen under different aquaculture conditions[J]. South China Fisheries Science, 2020, 16(6): 89-96. DOI: 10.12131/20200061
    [4]DING Weidong, CAO Liping, CAO Zheming, BING Xuwen. Effects of acute ammonia nitrogen stress on enzyme activities of gills and digest tract in juvenile mandarin fish (Siniperca chuatsi)[J]. South China Fisheries Science, 2020, 16(3): 31-37. DOI: 10.12131/20190188
    [5]ZHOU Falin, YANG Qibing, HUANG Jianghua, JIANG Shong, YANG Lishi, ZHANG Tangsheng, JIANG Shigui. Estimation of genetic parameters for ammonia nitrogen and freshwater tolerance traits in Penaeus monodon[J]. South China Fisheries Science, 2019, 15(5): 63-68. DOI: 10.12131/20190091
    [6]XIN Yanjie, HU Xiaojuan, CAO Yucheng, XU Yu, XU Yunna, SU Haochang, XU Chuangwen, WEN Guoliang, LI Zhuojia. Effects of inoculant of photosynthetic bacteria and Rhodopseudomonas palustris on nitrogen and phosphorus nutrients and microbial community in experimental water[J]. South China Fisheries Science, 2019, 15(1): 31-41. DOI: 10.12131/20180144
    [7]LIU Dandan, LI Chunsheng, YANG Xianqing, CHEN Shengjun, DENG Jianchao, WANG Yueqi, LI Laihao. Isolation, identification and degradation characteristics of Enterobacter sp. B-20 from malachite green degradation bacteria[J]. South China Fisheries Science, 2018, 14(1): 50-59. DOI: 10.3969/j.issn.2095-0780.2018.01.007
    [8]YUAN Ruipeng, LIU Jianyong, ZHANG Jiachen, CHEN Xiaoming, ZHENG Jingjing. Selection response and heritability of growth and high ammonia nitrogen tolerance in Litopenaeus vannamei[J]. South China Fisheries Science, 2017, 13(3): 83-89. DOI: 10.3969/j.issn.2095-0780.2017.03.011
    [9]FU Teng, SONG Shasha, MA Hongling, WANG Bo, CHEN Xinxiang, GUO Zhixun. Influence of nitrate nitrogen on immune factors in serum of Pacific white shrimp (Litopenaeus vannamei)[J]. South China Fisheries Science, 2016, 12(2): 44-50. DOI: 10.3969/j.issn.2095-0780.2016.02.007
    [10]HU Zhiguo, LIU Jianyong, YUAN Ruipeng, ZHANG Jiachen. Combining ability for resistance of Litopenaeus vannamei to ammonia nitrogen and dissolved oxygen[J]. South China Fisheries Science, 2016, 12(1): 43-49. DOI: 10.3969/j.issn.2095-0780.2016.01.007
  • Cited by

    Periodical cited type(3)

    1. 王晗,卢圣鄂,卓维,亓俊朋,任风鸣. Illumina高通量测序辅助分离鉴定宽体金线蛭肠炎病病原菌. 中国药学杂志. 2025(07): 695-703 .
    2. 田甜,张建明,朱欣,张德志,胡亚成. 50日龄中华鲟幼鱼肠道微生物群落结构特征及其影响因素. 南方水产科学. 2025(02): 102-109 . 本站查看
    3. 杨飞,汪斌,喻召雄,周治兵,兰松,张中良,周波. 长江鲟源致病性中间气单胞菌的分离鉴定及药敏试验. 西南农业学报. 2024(12): 2787-2792 .

    Other cited types(2)

Catalog

    Recommendations
    50日龄中华鲟幼鱼肠道微生物群落结构特征及其影响因素
    田甜 et al., 南方水产科学, 2025
    低盐水体so4 2−/cl− 胁迫下凡纳滨对虾生长、肝胰腺与鳃组织结构及酶活力比较
    贺铮 et al., 南方水产科学, 2025
    基于底栖生物完整性指数 (b-ibi) 的仁怀市主要河流健康评价
    何浩宇 et al., 南方水产科学, 2025
    南海岛礁鱼源产蛋白酶菌株热带芽孢杆菌btzb2的特性研究
    胡晓娟 et al., 南方水产科学, 2024
    江西养殖水体细菌群落结构及其与环境因子的关系
    钟可儿 et al., 大连海洋大学学报, 2024
    鲟源海分枝杆菌基因组结构及致病性
    龚可立 et al., 广东海洋大学学报, 2025
    The fish microbiota: research progress and potential applications
    Luan, Yinyin et al., ENGINEERING, 2023
    A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: occurrence, contamination, and transmission
    Yuan, Xia et al., TOXICS, 2023
    Morphological and phylogenetical analyses of pathogenic hypomyces perniciosus isolates from agaricus bisporus causing wet bubble disease in china
    PHYTOTAXA, 2021
    The abundance of microplastics in the digestive system of silver barb (barbonymus gonionotus) from the waters of the karang mumus river, samarinda city, indonesia
    WATER CONSERVATION AND MANAGEMENT, 2024
    Powered by
    Article views (407) PDF downloads (37) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return