LUO Yuting, FANG Di'an, ZHOU Yanfeng, XU Dongpo, PENG Yunxin, PENG Fei, ZHANG Guining, LIU Kai, YOU Yang. Genetic diversity of silver carp (Hypophthalmichthys molitrix) in lower reaches of Yangtze River based on microsatellite markers[J]. South China Fisheries Science, 2021, 17(6): 48-57. DOI: 10.12131/20210067
Citation: LUO Yuting, FANG Di'an, ZHOU Yanfeng, XU Dongpo, PENG Yunxin, PENG Fei, ZHANG Guining, LIU Kai, YOU Yang. Genetic diversity of silver carp (Hypophthalmichthys molitrix) in lower reaches of Yangtze River based on microsatellite markers[J]. South China Fisheries Science, 2021, 17(6): 48-57. DOI: 10.12131/20210067

Genetic diversity of silver carp (Hypophthalmichthys molitrix) in lower reaches of Yangtze River based on microsatellite markers

More Information
  • Received Date: February 28, 2021
  • Revised Date: April 13, 2021
  • Accepted Date: May 05, 2021
  • Available Online: May 28, 2021
  • In order to understand the genetic diversity and distribution of silver carp (Hypophthalmichthys molitrix) in the lower reaches of the Yangtze River, we used simple sequence repeats (SSR) combining with capillary electrophoresis to analyze 327 DNA samples of silver carp from eight wild populations in Yangtze River sections (Hukou, Anqing, Wuhu, Dangtu, Zhenjiang, Jingjiang, Zhangjiagang and Changshu sections) from 2017 to 2019, so as to investigate their genetic diversity, genetic differentiation and genetic structure. The results show that the genetic diversity of the eight populations was high. However, heterozygotes were not enough in the populations. The number of alleles ranged from 6.00 to 12.3, while the number of effective alleles ranged from 3.94 to 6.10. The observed heterozygosity and expected heterozygosity ranged from 0.617 to 0.719 and from 0.658 to 0.774, respectively. The unbiased expected heterozygosity ranged from 0.671 to 0.782. The Shannon's information index ranged from 1.38 to 1.86, and the inbreeding coefficient ranged from 0.001 to 0.174. The genetic differentiation analysis shows that the Fst value ranged from 0.006 to 0.068, while the gene flow ranged from 3.41 to 41.9. The genetic distance ranged from 0.001 to 0.106. Hukou population showed a moderate degree of genetic difference with the other populations, while the genetic differences among the other populations were small. Analysis of molecular variance shows that the variation mainly was within the population (97.6%). Genetic structure analysis shows that Hukou population had different gene pool from the other populations. The river-lake connectivity may be of positive significance for silver carp to show unique genetic differentiation characteristics in Hukou section of the Yangtze River. Therefore, whether the formation of this population differentiation is caused by the spatial isolation of geographical distance or the physiological barrier of habitat difference needs to be further studied.
  • [1]
    倪勇, 伍汉霖. 江苏鱼类志[M]. 北京: 中国农业出版社, 2006: 315-317.
    [2]
    刘飞, 林鹏程, 黎明政, 等. 长江流域鱼类资源现状与保护对策[J]. 水生生物学学报, 2019, 43: 144-156.
    [3]
    杨习文. 基于微卫星标记的长江江苏段鲢 (Hypophthalmichthys molitrix) 增殖放流效果评估[D]. 上海: 上海海洋大学, 2019: 50-52.
    [4]
    张敏莹, 徐东坡, 刘凯, 等. 长江下游放流鲢群体遗传多样性的微卫星标记分析[J]. 江西农业大学学报, 2012, 34(1): 141-146. doi: 10.3969/j.issn.1000-2286.2012.01.026
    [5]
    朱晓东, 耿波, 李娇, 等. 利用30个微卫星标记分析长江中下游鲢群体的遗传多样性[J]. 遗传, 2007, 29(6): 705-715. doi: 10.3321/j.issn:0253-9772.2007.06.010
    [6]
    王长忠, 梁宏伟, 邹桂伟, 等. 长江中上游两个鲢群体遗传变异的微卫星分析[J]. 遗传, 2008, 30(10): 1341-1348. doi: 10.3321/j.issn:0253-9772.2008.10.016
    [7]
    沙航, 罗相忠, 李忠, 等. 基于COI序列的长江中上游鲢6个地理群体遗传多样性分析[J]. 中国水产科学, 2018, 25(4): 783-792.
    [8]
    陈会娟, 刘明典, 汪登强, 等. 长江中上游4个鲢群体遗传多样性分析[J]. 淡水渔业, 2018, 48(1): 20-25. doi: 10.3969/j.issn.1000-6907.2018.01.004
    [9]
    陈会娟. 长江中游四大家鱼放流亲本对早期资源和遗传多样性的影响研究[D]. 重庆: 西南大学, 2019: 85.
    [10]
    许承双, 艾志强, 肖鸣. 影响长江四大家鱼自然繁殖的因素研究现状[J]. 三峡大学学报 (自然科学版), 2017, 39(4): 27-30.
    [11]
    刘熠, 杨习文, 任鹏, 等. 长江湖口段春夏季仔稚鱼群落结构研究[J]. 水生生物学报, 2019, 43(1): 141-154.
    [12]
    杨习文, 刘熠, 薛向平, 等. 基于微卫星标记的长江江苏段鲢(Hypophthalmichthys molitrix)增殖放流资源贡献率的评估[J]. 湖泊科学, 2020, 32(4): 1154-1164. doi: 10.18307/2020.0422
    [13]
    KALINOWSKI S T, TAPER M L, MARSHALL T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Mol Ecol, 2007, 16(5): 1099-1106. doi: 10.1111/j.1365-294X.2007.03089.x
    [14]
    PEAKALL R, SMOUSE P E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research[J]. Mol Ecol Notes, 2006, 6(1): 288-295. doi: 10.1111/j.1471-8286.2005.01155.x
    [15]
    EXCOFFIER L, LISCHER H. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3): 564-567. doi: 10.1111/j.1755-0998.2010.02847.x
    [16]
    TAMURA K, PETERSON D, PETERSON N, et al. MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10): 2731-2739. doi: 10.1093/molbev/msr121
    [17]
    SMOUSE P E, PEAKALL R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure[J]. Heredity, 2010, 82(5): 561-573.
    [18]
    EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation studies[J]. Mol Ecol, 2005, 14(8): 2611-2620. doi: 10.1111/j.1365-294X.2005.02553.x
    [19]
    JAKOBSSON M, ROSENBERG N A. Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure[J]. Bioinformatics, 2007, 23(14): 1801-1806. doi: 10.1093/bioinformatics/btm233
    [20]
    SWIFT M L. Graphpad prism, data analysis, and scientific graphing[J]. J Chem Inf Model, 1997, 37(2): 411-412.
    [21]
    BOTSTEIN D, WHITER R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32(3): 314-331.
    [22]
    胡玉婷, 江河, 段国庆, 等. 安徽两水系黄颡鱼的微卫星遗传多样性分析[J]. 南方水产科学, 2020, 16(5): 33-41. doi: 10.12131/20200063
    [23]
    SHETE S, TIWARI H, ELSTON R C. On estimating the heterozygosity and polymorphism information content value[J]. Theor Popul Biol, 2000, 57(3): 265-271. doi: 10.1006/tpbi.2000.1452
    [24]
    WAPLES R S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci[J]. Conserv Genet, 2006, 7(2): 167-184. doi: 10.1007/s10592-005-9100-y
    [25]
    KALINOWSKI S T. Counting alleles with rarefaction: private alleles and hierarchical sampling designs[J]. Conserv Genet, 2004, 5(4): 539-543. doi: 10.1023/B:COGE.0000041021.91777.1a
    [26]
    姬长虹, 谷晶晶, 毛瑞鑫, 等. 长江、珠江、黑龙江水系野生鲢遗传多样性的微卫星分析[J]. 水产学报, 2009, 33(3): 364-371.
    [27]
    KALLINOWSKI S T. HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness[J]. Mol Ecol Notes, 2005, 5(1): 187-189. doi: 10.1111/j.1471-8286.2004.00845.x
    [28]
    TAKEZAKI N, NEI M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA[J]. Genetics, 1996, 144(1): 389-399. doi: 10.1093/genetics/144.1.389
    [29]
    孙立元, 郭华阳, 朱彩艳, 等. 卵形鲳鲹育种群体遗传多样性分析[J]. 南方水产科学, 2014, 10(2): 67-71. doi: 10.3969/j.issn.2095-0780.2014.02.010
    [30]
    李鹏飞, 刘萍, 柳学周, 等. 漠斑牙鲆引进种群同工酶的遗传多态性分析[J]. 中国水产科学, 2006, 13(1): 13-19. doi: 10.3321/j.issn:1005-8737.2006.01.003
    [31]
    MOSS D R, ARCES S M, OTOSHI C A, et al. Effects of inbreeding on survival and growth of Pacific white shrimp Penaeus (Litopenaeus) vannamei[J]. Aquaculture, 2007, 272(S1): S30-S37.
    [32]
    FANG D A, LUO Y T, XU D P, et al. Relationship between genetic risk and stock enhancement of the silver carp (Hypophthalmichthys molitrix) in the Yangtze River[J]. Fish Res, 2021, 235: 105829.
    [33]
    SHAKLEE J B, TAMARU C S, WAPLES R S. Speciation and evolution of marine fishes studied by the electrophoresis analysis of proteins[J]. Pac Sci, 1982, 36: 141-157.
    [34]
    赵金良, 李思发. 长江中下游鲢、鳙、草鱼、青鱼种群分化的同工酶分析[J]. 水产学报, 1996, 20(2): 104-110.
    [35]
    李思发, 吕国庆. 长江中下游鲢鳙草青四大家鱼线粒体DNA多样性分析[J]. 动物学报, 1998, 44(1): 82-93. doi: 10.3969/j.issn.1674-5507.1998.01.013
    [36]
    张四明, 邓怀, 汪登强, 等. 长江水系鲢和草鱼遗传结构及变异性的RAPD研究[J]. 水生生物学报, 2001, 25(4): 325-330.
    [37]
    WEIGHT S. Evolution and the genetics of population variability within and among natural populations[M]. Chicago: University of Chicago Press, 1978: 4.
    [38]
    RAFAEL G A, BEATRIZ G, MARTÍNEZ S C G, et al. Extensive pollen flow but few pollen donors and high reproductive variance in an extremely fragmented landscape[J]. PLoS One, 2017, 7(11): 0049012.
    [39]
    于悦. 长江、赣江、鄱阳湖鲢遗传多样性和群体遗传结构分析[D]. 武汉: 华中农业大学, 2016: 18.
  • Cited by

    Periodical cited type(10)

    1. 朱文慧,谭桂芝,步营,李学鹏,励建荣,崔方超,檀茜倩,孟玉琼,马睿,郭晓华. 低温等离子体耦合微酸性电解水对三文鱼的保鲜作用. 中国食品学报. 2024(02): 228-238 .
    2. 孙万青,岑剑伟,陈胜军,李春生,邓建朝,潘创,杨少玲,冯阳. 微酸性电解水对盐渍海蜇脱铝的效果研究. 中国食品学报. 2023(01): 160-170 .
    3. 韦丽娜,李来好,郝淑贤,黄卉,杨贤庆,相欢,赵永强,岑剑伟,魏涯. 渗透处理对冷冻干燥罗非鱼肉品质和肌原纤维蛋白的影响. 南方水产科学. 2023(02): 133-141 . 本站查看
    4. 敖菲菲,方祥,梁钻好,陈海强,梁凤雪,黄成龙,余铭. 酸性电解水对罗非鱼片的杀菌工艺研究. 食品科技. 2021(03): 105-111 .
    5. 张宇,宋力,李达,王志敏,田瑞. 太阳能与辅助热源互补供暖仿真研究. 工程热物理学报. 2021(08): 2048-2059 .
    6. 孔金花,诸永志,葛庆丰,卞欢,闫征,刘芳,徐为民. 超声波协同微酸性电解水对小龙虾净化及品质的影响. 食品工业科技. 2021(21): 182-189 .
    7. 蓝蔚青,刘琳,孙晓红,赵亚楠,谢晶. 酸性电解水发生机理及在水产领域中的应用研究进展. 食品与发酵工业. 2020(04): 294-298 .
    8. 岑剑伟,于福田,杨贤庆,李来好,黄卉,赵永强,魏涯,郝淑贤,林织. 几种杀菌方法对罗非鱼片鱼肉品质的影响比较. 食品与发酵工业. 2020(07): 123-129 .
    9. 岑剑伟,于福田,杨贤庆,李来好,黄卉,魏涯,赵永强,林织. 微酸性电解水对罗非鱼片保鲜效果的研究. 食品与发酵工业. 2019(18): 209-214 .
    10. 石慧,杨少玲,吴燕燕,林婉玲,杨贤庆,黄卉. 卵形鲳鲹鱼片热风干燥条件优化及其品质特性研究. 食品与发酵工业. 2019(17): 129-135 .

    Other cited types(7)

Catalog

    Article views (784) PDF downloads (64) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return