MA Bin, SU Hang, XU Yongjiang, CUI Aijun, JIANG Yan, YAN Han, FENG Yuan, GONG Yanjun, FENG Dejun. Effects of alginate oligosaccharide on growth performance, physiological indicators and intestinal morphology of Lateolabrax maculatus juvenile[J]. South China Fisheries Science, 2024, 20(3): 76-84. DOI: 10.12131/20240022
Citation: MA Bin, SU Hang, XU Yongjiang, CUI Aijun, JIANG Yan, YAN Han, FENG Yuan, GONG Yanjun, FENG Dejun. Effects of alginate oligosaccharide on growth performance, physiological indicators and intestinal morphology of Lateolabrax maculatus juvenile[J]. South China Fisheries Science, 2024, 20(3): 76-84. DOI: 10.12131/20240022

Effects of alginate oligosaccharide on growth performance, physiological indicators and intestinal morphology of Lateolabrax maculatus juvenile

More Information
  • Received Date: January 23, 2024
  • Revised Date: March 11, 2024
  • Accepted Date: March 25, 2024
  • Available Online: April 02, 2024
  • Addition of oligosaccharide prebiotics into feeds can effectively enhance growth and immune-related performance of fish. Alginate oligosaccharide, an oligosaccharide prebiotic extracted from marine fucoidan, plays an important role in improving growth and immune performance of aquaculture animals. In order to investigate the effects of alginate oligosaccharide on the growth and immune performance of Lateolabrax maculatus juvenile, we conducted a 42-day experiment by adding alginate oligosaccharide to basic feed at doses of 0, 50, 100, and 200 mg·kg−1 (alginate oligosaccharide: basic feed) to prepare experimental feed. The results show that the highest weight gain rate (WGR) [(96.50±7.95)%] and specific growth rate (SGR) [(1.73±0.09)%·d−1] of juvenile were observed with alginate oligosaccharide addition of 100 mg·kg−1. Expression of gh was significantly up-regulated in 100 mg·kg−1 group (P<0.05). Meanwhile, the intestinal muscular thickness, villus height, villus width of juveniles, as well as the activities of trypsin (TRY), amylase (AMS) and lipase (LPS) in 100 mg·kg−1 group were still higher than those of the control group (P<0.05). With increase of alginate oligosaccharide content, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and lysozyme (LZM) all increased significantly in liver of juvenile (P<0.05), while the malondialdehyde (MDA) content decreased significantly (P<0.05). Therefore, alginate oligosaccharide can improve the immune level of L. maculatus juvenile significantly. Besides, it has a certain promotion effect on its growth. The study provides theoretical references for the use of alginate oligosaccharide to promote the healthy growth of L. maculatus.

  • [1]
    温海深, 钱焜, 张美昭, 等. 花鲈繁殖生理及人工养殖模式探析[J]. 现代农业科技, 2013(5): 281-282.
    [2]
    胡建美, 马壮, 王宝屯, 等. 短期投喂石榴皮水提物对花鲈防控杀鱼爱德华氏菌感染的作用[J]. 大连海洋大学学报, 2023, 38(3): 397-405.
    [3]
    苏友禄, 李勇, 王宝屯, 等. 养殖花鲈病毒和寄生虫性疾病鉴别与控制[J]. 水产养殖, 2020, 41(8): 70-72, 75.
    [4]
    WANG C A, XU Z, LU S X, et al. Effects of dietary xylooligosaccharide on growth, digestive enzymes activity, intestinal morphology, and the expression of inflammatory cytokines and tight junctions genes in triploid Oncorhynchus mykiss fed a low fishmeal diet[J]. Aquac Rep, 2022, 22: 100941. doi: 10.1016/j.aqrep.2021.100941
    [5]
    胡晓伟, 上官静波, 黎中宝, 等. 低聚木糖对花鲈幼鱼生长性能、血清生化和免疫指标及肠道菌群组成的影响[J]. 动物营养学报, 2018, 30(2): 734-742.
    [6]
    SHI F, QIU X L, NIE L J, et al. Effects of oligochitosan on the growth, immune responses and gut microbes of tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immun, 2020, 106: 563-573. doi: 10.1016/j.fsi.2020.07.049
    [7]
    李明波, 沈凡, 崔庆奎, 等. 壳寡糖对杂交黄颡鱼“黄优1号”(黄颡鱼♀×瓦氏黄颡鱼♂)生长性能与免疫机能的影响[J]. 水生生物学报, 2020, 44(4): 707-716.
    [8]
    陈嘉俊, 石韫玉, 施斐, 等. 壳寡糖改善珍珠龙胆石斑鱼非特异性免疫能力的机制[J]. 水产学报, 2022, 46(1): 95-106.
    [9]
    胡凌豪, 杨红玲, 赵芸, 等. 果寡糖对斜带石斑鱼免疫功能和肠道形态的影响[J]. 水产科学, 2019, 38(5): 589-594.
    [10]
    王杰, 杨红玲, 赵芸, 等. 果寡糖对斜带石斑鱼生长性能和消化酶活性的影响[J]. 饲料与畜牧, 2016(12): 54-57.
    [11]
    赵峰, 陆娟娟, 夏中生, 等. 果寡糖对奥尼罗非鱼生长性能、血清生化指标和肠道菌群的影响[J]. 饲料工业, 2018, 39(20): 28-33.
    [12]
    WANG Z, HU J, MEI Z K, et al. Mannan-oligosaccharide induces trained immunity activation and alleviates pathological liver injury in turbot (Scophthalmus maximus)[J]. Aquaculture, 2024, 578: 740097. doi: 10.1016/j.aquaculture.2023.740097
    [13]
    EISSA E S H, EL-SAYED A F M, GHANEM S F, et al. Dietary mannan-oligosaccharides enhance hematological and biochemical parameters, reproductive physiology, and gene expression of hybrid red tilapia (Oreochromis niloticus×O. mossambicus)[J]. Aquaculture, 2024, 581: 740453. doi: 10.1016/j.aquaculture.2023.740453
    [14]
    邓婉珍. 褐藻寡糖对大菱鲆和凡纳滨对虾生长、肠道健康、免疫和抗病力的影响[D]. 济南: 山东大学, 2024: 3-4.
    [15]
    阿拉腾珠拉, 胡永飞. 褐藻寡糖的制备方法及生物活性研究进展[J]. 生物工程学报, 2022, 38(1): 104-118.
    [16]
    van DOAN H, HOSEINIFAR S H, TAPINGKAE W, et al. Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immun, 2016, 58: 678-685. doi: 10.1016/j.fsi.2016.10.013
    [17]
    van DOAN H, HOSEINIFAR S H, TAPINGKAE W, et al. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immun, 2017, 62: 139-146. doi: 10.1016/j.fsi.2017.01.014
    [18]
    HU J F, ZHANG J M, WU S J. The growth performance and non-specific immunity of juvenile grass carp (Ctenopharyngodon idella) affected by dietary alginate oligosaccharide[J]. 3 Biotech, 2021, 11: 46.
    [19]
    黄健彬, 迟艳, 周传朋, 等. 褐藻寡糖对卵形鲳鲹幼鱼生长性能、抗氧化能力和免疫功能的影响[J]. 南方水产科学, 2022, 18(3): 118-128.
    [20]
    ASHOURI G, SOOFIANI M N, HOSEINIFAR H S, et al. Influence of dietary sodium alginate and Pediococcus acidilactici on liver antioxidant status, intestinal lysozyme gene expression, histomorphology, microbiota, and digestive enzymes activity, in Asian sea bass (Lates calcarifer) juveniles[J]. Aquaculture, 2020, 518: 734638. doi: 10.1016/j.aquaculture.2019.734638
    [21]
    霍圃宇, 潘金露, 韩雨哲, 等. 褐藻酸寡糖对大菱鲆幼鱼生长性能、血液学指标及非特异性免疫影响[J]. 广东海洋大学学报, 2015, 35(4): 10-16.
    [22]
    BIRLA S, VIJAYAKUMAR P, SEHGAL S, et al. Characterization of a novel pou1f1 mutation identified on screening 160 growth hormone deficiency patients[J]. Horm metab res, 2019, 51: 248-255. doi: 10.1055/a-0867-1026
    [23]
    陈乃松, 周洁, 靳利娜, 等. 禁食对大口黑鲈生长和肝脏IGF-I mRNA表达丰度的影响[J]. 中国水产科学, 2010, 17(4): 713-720.
    [24]
    VIZCAINO A J, LOPEZ G, SAEZ M I, et al. Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles[J]. Aquaculture, 2014, 431: 34-43. doi: 10.1016/j.aquaculture.2014.05.010
    [25]
    麦浩彬, 郭鑫伟, 王金港, 等. 摄食不同水平饲料蛋白质对珍珠龙胆石斑鱼幼鱼肠道组织形态和菌群组成的影响[J]. 大连海洋大学学报, 2020, 35(1): 63-70.
    [26]
    徐革锋, 陈侠君, 杜佳, 等. 鱼类消化系统的结构、功能及消化酶的分布与特性[J]. 水产学杂志, 2009, 22(4): 49-55.
    [27]
    欧红霞, 王广军, 李志斐, 等. 不同饲料对大口黑鲈肠道组织结构的影响[J]. 水产科学, 2020, 39(6): 902-907.
    [28]
    ZHAO H X, CAO J M, HUANG Y H, et al. Effects of dietary nucleotides on growth, physiological parameters and antioxidant responses of juvenile yellow catfish Pelteobagrus fulvidraco[J]. Aquac Res, 2017, 48(1): 214-222. doi: 10.1111/are.12875
    [29]
    WU N, XU X, WANG B, et al. Anti-foodborne enteritis effect of galantamine potentially via acetylcholine antiinflammatory pathway in fish[J]. Fish Shellfish Immun, 2020, 97: 204-215. doi: 10.1016/j.fsi.2019.12.028
    [30]
    舒昊明. 褐藻寡糖对斜带石斑鱼生长性能、生理生化、肠道菌群及肝脏转录组的影响[D]. 厦门: 厦门大学, 2021: 21-27.
    [31]
    张荣斌, 曹俊明, 黄燕华, 等. 低聚木糖对奥尼罗非鱼肠道形态、菌群组成和抗嗜水气单胞菌感染的影响[J]. 上海海洋大学学报, 2012, 21(2): 233-240.
    [32]
    刘小刚, 周洪琪, 华雪铭, 等. 微生态制剂对异育银鲫消化酶活性的影响[J]. 水产学报, 2002(5): 448-452.
    [33]
    FU X Y, XUE C H, MIAO B C, et al. Characterization of proteases from the digestive tract of sea cucumber (Stichopus japonicus): high alkaline protease activity[J]. Aquaculture, 2005, 246(1): 321-329.
    [34]
    张梦婷, 李兆新, 邢丽红, 等. 褐藻寡糖及其锌络合物对暗纹东方鲀消化能力、血清生化指标及肠道菌群的影响[J]. 饲料工业, 2023, 44(4): 85-91.
    [35]
    潘金露, 韩雨哲, 霍圃宇, 等. 饲料中添加褐藻酸寡糖对大菱鲆肠道结构、消化酶活性及表观消化率的影响[J]. 广东海洋大学学报, 2016, 36(3): 39-44.
    [36]
    李玉芬. 褐藻胶寡糖的酶解制备及其应用研究[D]. 福州: 福州大学, 2020: 67-69.
    [37]
    CIRCU L M, AW Y T. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radical Bio Med, 2009, 48(6): 749-762.
    [38]
    苏慧, 区又君, 李加儿, 等. 饥饿对卵形鲳鲹幼鱼不同组织抗氧化能力、Na+/K+-ATP酶活力和鱼体生化组成的影响[J]. 南方水产科学, 2012, 8(6): 28-36.
    [39]
    GEBICKA L, KRYCH-MADEJ J. The role of catalases in the prevention/promotion of oxidative stress[J]. J Inorg Biochem, 2019, 197: 110699. doi: 10.1016/j.jinorgbio.2019.110699
    [40]
    张说, 赵强, 武雨心, 等. 红细胞抗氧化损伤研究进展[J]. 包头医学院学报, 2020, 36(1): 104-106, 114.
    [41]
    FLORESCU I E, GEORGESCU S E, DUDU A. et al. Oxidative stress and antioxidant defense mechanisms in response to starvation and refeeding in the intestine of stellate sturgeon (Acipenser stellatus) juveniles from aquaculture[J]. Animals, 2021, 11(1): 76. doi: 10.3390/ani11010076
    [42]
    江晓路, 杜以帅, 王鹏, 等. 褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响[J]. 中国海洋大学学报(自然科学版), 2009, 39(6): 1188-1192.
    [43]
    DUNIER M, SIWICKI A K, DEMAËL A. Effects of organophosphorus insecticides: effects of trichlorfon and dichlorvos on the immune response of carp (Cyprinus carpio): III. in vitro effects on lymphocyte proliferation and phagocytosis and in vivo effects on humoral response[J]. Ecotox Environ Saf, 1991, 22(1): 79-87. doi: 10.1016/0147-6513(91)90049-U

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return