HUANG Hao, FAN Sigang, WANG Pengfei, CHEN Jia, ZHAO Chao, YAN Lulu, QIU Lihua, PAN Ying. Genetic diversity analysis of six geographical populations of Lateolabrax maculatus based on microsatellite markers[J]. South China Fisheries Science, 2022, 18(1): 99-106. DOI: 10.12131/20210126
Citation: HUANG Hao, FAN Sigang, WANG Pengfei, CHEN Jia, ZHAO Chao, YAN Lulu, QIU Lihua, PAN Ying. Genetic diversity analysis of six geographical populations of Lateolabrax maculatus based on microsatellite markers[J]. South China Fisheries Science, 2022, 18(1): 99-106. DOI: 10.12131/20210126

Genetic diversity analysis of six geographical populations of Lateolabrax maculatus based on microsatellite markers

More Information
  • Received Date: April 21, 2021
  • Revised Date: June 14, 2021
  • Accepted Date: July 11, 2021
  • Available Online: July 14, 2021
  • In order to analyze the genetic structure of Lateolabrax maculatus, we selected 11 polymorphic microsatellite loci from L. maculatus genome sequence to investigate the genetic structure of six wild populations of L. maculatus. All of the wild L. maculatus were fished from the coast of Tianjin, Qingdao, Changdao, Shanghai, Xiamen and Beihai, China, respectively. A total of 57 alleles were detected from 11 polymorphic microsatellite loci and 7 microsatellite loci were highly polymorphic loci. Among the six populations, the number of alleles (Na) was 3.909 3–4.636 4 and the effective number of alleles (Ne) was 2.293 4–2.773 5. The observed heterozygosity (Ho) was 0.391 3–0.456 8 and the expected heterozygosity (He) was 0.505 1–0.566 2. The polymorphism information content (PIC) was 0.388 8–0.518 9. The populations of L. maculatus from Qingdao, Shanghai and Beihai had highly polymorphism, and the other populations had moderate polymorphism. The Shanghai population had the highest polymorphism among all the populations. Changdao and Xiamen populations had low polymorphism. The genetic differentiation index (FST) was 0.022 6–0.055 2. The genetic differentiation among the six population was low and the highest genetic differentiation was detected between Tianjin population and Beihai population. The gene flow (Nm) was 4.276 6–11.220 8, and the most frequent gene exchange was found among these populations. The analysis of molecular variance (AMOVA) shows that the variation among populations accounted for 91% and the variation within populations accounted for 9%. The cluster analysis based on individual classification shows that the individuals of six populations were divided into two genotype groups and no independent genotype group was detected. The UPMGA cluster tree based on genetic distance shows that six populations were divided into two branchs.
  • [1]
    CHEN B H, LI Y, LUO X, et al. Chromosome-level assembly of the Chinese seabass (Lateolabrax maculatus)[J]. Front Genet, 2019, 10: 275. doi: 10.3389/fgene.2019.00275
    [2]
    苏跃鹏. 海鲈养殖新技术[M]. 北京: 中国农业出版社, 2014: 1-6.
    [3]
    农业农村部渔业渔政管理局. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 22.
    [4]
    温海深, 李昀, 张美昭, 等. 花鲈——家喻户晓的中国海鲈[J]. 中国水产, 2020(8): 110-111.
    [5]
    王清印. 水产生物育种理论与实践[M]. 北京: 科学出版社, 2013: 1.
    [6]
    温海深, 于朋, 李昀, 等. 花鲈南北方养殖群体的形态学比较研究[J]. 中国水产, 2020(4): 81-84.
    [7]
    温海深, 张美昭, 李吉方, 等. 我国花鲈养殖产业现状与种子工程研究进展[J]. 渔业信息与战略, 2016, 31(2): 105-111.
    [8]
    VARSHNEY R K, BOHRA A, YU J, et al. Designing future crops: genomics-assisted breeding comes of age[J]. Trends Plant Sci, 2021, 26(6): 631-649. doi: 10.1016/j.tplants.2021.03.010
    [9]
    BAGSHAW A. Functional mechanisms of microsatellite DNA in eukaryotic genomes[J]. Genome Biol Evol, 2017, 9(9): 2428-2443. doi: 10.1093/gbe/evx164
    [10]
    VIJ S, KUHL H, KUZNETSOVA I S, et al. Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding[J]. PLoS Genet, 2016, 12(4): e1005954. doi: 10.1371/journal.pgen.1005954
    [11]
    ZHANG X, YUAN J, SUN Y, et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting[J]. Nat Commun, 2019, 10(1): 356. doi: 10.1038/s41467-018-08197-4
    [12]
    WANG W, WU B, LIU Z, et al. Development of EST-SSRs from the ark shell (Scapharca broughtonii) transcriptome and their application in genetic analysis of four populations[J]. Genes Genom, 2021, 43(6): 669-677. doi: 10.1007/s13258-021-01090-3
    [13]
    ISMAIL N A, RAFII M Y, MAHMUD T M M, et al. Genetic diversity of torch ginger (Etlingera elatior) germplasm revealed by ISSR and SSR markers[J]. Biomed Res Int, 2019, 2019: 5904804.
    [14]
    SHEN Z Y, YU D, GAO X, et al. Genetic diversity and reproductive success of a wild population of Chinese sturgeon (Acipenser sinensis) from the Yangtze River inferred from juveniles born in 2014[J]. Zool Res, 2020, 41(4): 423-430. doi: 10.24272/j.issn.2095-8137.2020.011
    [15]
    MIHALJEVIC M Z, MALETIC E, PREINER D, et al. Genetic diversity, population structure, and parentage analysis of croatian grapevine germplasm[J]. Genes (Basel), 2020, 11(7): 737. doi: 10.3390/genes11070737
    [16]
    ROMDHANE M B, RIAHI L, JARDAK R, et al. Fingerprinting and genetic purity assessment of F1 barley hybrids and their salt-tolerant parental lines using nSSR molecular markers[J]. 3 Biotech, 2018, 8: 57.
    [17]
    GUERRERO-CÓZAR I, PEREZ-GARCIA C, BENZEKRI H, et al. Development of whole-genome multiplex assays and construction of an integrated genetic map using SSR markers in Senegalese sole[J]. Sci Rep, 2020, 10(1): 21905. doi: 10.1038/s41598-020-78397-w
    [18]
    FAN M, GAO Y, WU Z, et al. Linkage map development by EST-SSR markers and QTL analysis for inflorescence and leaf traits in Chrysanthemum (Chrysanthemum morifolium Ramat.)[J]. Plants (Basel), 2020, 9(10): 1342.
    [19]
    李景芬, 夏正龙, 栾生, 等. 五个罗氏沼虾群体遗传多样性的微卫星分析[J]. 水生生物学报, 2020, 44(6): 1208-1214.
    [20]
    胡玉婷, 江河, 段国庆, 等. 安徽两水系黄颡鱼的微卫星遗传多样性分析[J]. 南方水产科学, 2020, 16(5): 33-41. doi: 10.12131/20200063
    [21]
    沙航, 罗相忠, 邹桂伟, 等. 长江中游鳙群体的微卫星遗传多样性分析[J]. 淡水渔业, 2020, 50(4): 12-17. doi: 10.3969/j.issn.1000-6907.2020.04.002
    [22]
    SHAO C W, CHEN S L, XU G B, et al. Eighteen novel microsatellite markers for the Chinese sea perch, Lateolabrax maculatus[J]. Conserv Genet, 2009, 10: 623-625. doi: 10.1007/s10592-008-9592-3
    [23]
    ZHANG H R, NIU S F, WU R X, et al. Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculatus and cross-species amplification for the phylogenetically related taxa[J]. Biochem Syst Ecol, 2016, 66: 326-330. doi: 10.1016/j.bse.2016.05.008
    [24]
    AN H, LEE J, KIM H, et al. Genetic differences between wild and hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) inferred from microsatellite markers[J]. Genes Genom, 2013, 35(5): 671-680. doi: 10.1007/s13258-013-0135-z
    [25]
    江鑫. 花鲈与日本鲈群体遗传结构与多样性研究[D]. 青岛: 中国海洋大学, 2009: 75-76.
    [26]
    王桂兴, 侯吉伦, 任建功, 等. 中国沿海6个花鲈群体的遗传多样性分析[J]. 中国水产科学, 2017, 24(2): 395-402.
    [27]
    PEAKALL R O D, SMOUSE P E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research[J]. Mol Ecol Notes, 2006, 6(1): 288-295. doi: 10.1111/j.1471-8286.2005.01155.x
    [28]
    KALINOWSKI S T, TAPER M L, MARSHALL T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Mol Ecol, 2007, 16: 1099-1106. doi: 10.1111/j.1365-294X.2007.03089.x
    [29]
    KUMAR S, STECHER G, LI M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6): 1547-1549. doi: 10.1093/molbev/msy096
    [30]
    LILIANA P H, YARIMAR R, CARLA S, et al. An overview of STRUCTURE: applications, parameter settings, and supporting software[J]. Front Genet, 2013, 4: 98.
    [31]
    EARL D A, VONHOLDT B M. Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conserv Genet Resour, 2011, 4(2): 359-361.
    [32]
    赵燕, 季相山, 曾勇庆, 等. 花鲈微卫星标记分离及其多态性分析[J]. 动物学研究, 2011, 32(5): 515-520.
    [33]
    翟云, 吴仁协, 牛素芳, 等. 采用高通量技术开发花鲈二碱基重复微卫星标记[J]. 基因组学与应用生物学, 2020, 39(2): 27-33.
    [34]
    TOTH G, GASPARI Z, JURKA J. Microsatellites in different eukaryotic genomes: survey and analysis[J]. Genome Res, 2000, 10(7): 967. doi: 10.1101/gr.10.7.967
    [35]
    BOSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32(3): 314-331.
    [36]
    王丰, 张家华, 沈玉帮, 等. 青鱼野生与养殖群体遗传变异的微卫星分析[J]. 水生生物学报, 2019, 43(5): 939-944. doi: 10.7541/2019.111
    [37]
    FRANCOIS B, NICOLAS L M. The estimation of population differentiation with microsatellite markers[J]. Mol Ecol, 2002, 11(2): 155-165. doi: 10.1046/j.0962-1083.2001.01436.x
    [38]
    WRIGHT S. Evolution in mendelian population[J]. Bull Math Biol, 1990, 52(2): 241-295. doi: 10.1093/genetics/16.2.97
    [39]
    TINE M, KUHL H, GAGNAIRE P A, et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation[J]. Nat Commun, 2014, 5: 5770. doi: 10.1038/ncomms6770
    [40]
    翁朝红, 谢仰杰, 肖志群, 等. 中国鲎 (Tachypleus tridentatus) 微卫星标记筛选及种群遗传多样性和遗传结构分析[J]. 海洋与湖沼, 2020, 51(2): 131-139.
    [41]
    周梦晨, 徐东坡, 方弟安, 等. 6个不同群体鳜基于SSR的遗传多样性初步研究[J]. 中国农学通报, 2020, 36(26): 147-152.
    [42]
    刘洁, 高风英, 陈刚, 等. 珠江流域9个大鳞副泥鳅群体遗传多样性的微卫星分析[J]. 渔业科学进展, 2020, 41(4): 50-57.
  • Cited by

    Periodical cited type(10)

    1. 朱文慧,谭桂芝,步营,李学鹏,励建荣,崔方超,檀茜倩,孟玉琼,马睿,郭晓华. 低温等离子体耦合微酸性电解水对三文鱼的保鲜作用. 中国食品学报. 2024(02): 228-238 .
    2. 孙万青,岑剑伟,陈胜军,李春生,邓建朝,潘创,杨少玲,冯阳. 微酸性电解水对盐渍海蜇脱铝的效果研究. 中国食品学报. 2023(01): 160-170 .
    3. 韦丽娜,李来好,郝淑贤,黄卉,杨贤庆,相欢,赵永强,岑剑伟,魏涯. 渗透处理对冷冻干燥罗非鱼肉品质和肌原纤维蛋白的影响. 南方水产科学. 2023(02): 133-141 . 本站查看
    4. 敖菲菲,方祥,梁钻好,陈海强,梁凤雪,黄成龙,余铭. 酸性电解水对罗非鱼片的杀菌工艺研究. 食品科技. 2021(03): 105-111 .
    5. 张宇,宋力,李达,王志敏,田瑞. 太阳能与辅助热源互补供暖仿真研究. 工程热物理学报. 2021(08): 2048-2059 .
    6. 孔金花,诸永志,葛庆丰,卞欢,闫征,刘芳,徐为民. 超声波协同微酸性电解水对小龙虾净化及品质的影响. 食品工业科技. 2021(21): 182-189 .
    7. 蓝蔚青,刘琳,孙晓红,赵亚楠,谢晶. 酸性电解水发生机理及在水产领域中的应用研究进展. 食品与发酵工业. 2020(04): 294-298 .
    8. 岑剑伟,于福田,杨贤庆,李来好,黄卉,赵永强,魏涯,郝淑贤,林织. 几种杀菌方法对罗非鱼片鱼肉品质的影响比较. 食品与发酵工业. 2020(07): 123-129 .
    9. 岑剑伟,于福田,杨贤庆,李来好,黄卉,魏涯,赵永强,林织. 微酸性电解水对罗非鱼片保鲜效果的研究. 食品与发酵工业. 2019(18): 209-214 .
    10. 石慧,杨少玲,吴燕燕,林婉玲,杨贤庆,黄卉. 卵形鲳鲹鱼片热风干燥条件优化及其品质特性研究. 食品与发酵工业. 2019(17): 129-135 .

    Other cited types(7)

Catalog

    Article views (809) PDF downloads (74) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return