LI Haohua, LIAO Tao, BAI Chan, QIU Liang, ZU Xiaoyan, LI Hailan, CHEN Liping, XIONG Guangquan, WANG Juguang. Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus[J]. South China Fisheries Science, 2024, 20(2): 160-171. DOI: 10.12131/20230154
Citation: LI Haohua, LIAO Tao, BAI Chan, QIU Liang, ZU Xiaoyan, LI Hailan, CHEN Liping, XIONG Guangquan, WANG Juguang. Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus[J]. South China Fisheries Science, 2024, 20(2): 160-171. DOI: 10.12131/20230154

Effects of pre-transport density and temperature domestication on simulated transport of juvenile Ictalurus punctatus

More Information
  • Received Date: August 08, 2023
  • Revised Date: September 26, 2023
  • Accepted Date: December 04, 2023
  • Available Online: December 12, 2023
  • To explore the effects of different pre-transport acclimation methods on water quality, biochemical parameters and tissue structure of juvenile Ictalurus punctatus during transportation, and to provide references for transportation of juvenile I. punctatus, we conducted pre-transport intensive acclimation and temperature acclimation. The pre-transport intensive acclimation involved fish-to-water ratios of 1∶2, 1∶3 and 1∶4, and the temperature acclimation was at 14, 19 and 24 ℃. The simulation transport lasted for 18 h, and we investigated the changes in water quality (Ammonia nitrogen, pH), biochemical parameters [Glucose (Glu)、cortisol (Cor), lactate dehydrogenase (LDH), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA)] as well as organizational structure (Skin and intestine) at different time (0th, 2nd, 6th, 18th hour) and 24-hour recovery after transport. The results show that pre-transport intensive acclimation with a fish-to-water ratio of 1∶4 and a temperature of 19 ℃ had lower ammonia nitrogen levels than the other treatments (P<0.05). Glu, Cor, LDH, CAT, SOD and MDA levels were higher than the other groups, and there was minimal damage to the skin and intestinal structures. In conclusion, pre-transport intensive acclimation with a fish-to-water ratio of 1∶4 and a temperature of 19 ℃ can improve anti-stress capacity effectively during transportation of juvenile I. punctatus.

  • [1]
    WANG J G, XIONG G Q, BAI C, et al. Anesthetic efficacy of two plant phenolics and the physiological response of juvenile Ictalurus punctatus to simulated transport[J]. Aquaculture, 2021, 538: 736566. doi: 10.1016/j.aquaculture.2021.736566
    [2]
    孙学亮, 杨树元, 陈成勋, 等. 捕捞胁迫对半滑舌鳎血液生化指标的影响[J]. 长江大学学报 (自然科学版), 2012, 9(4): 28-32.
    [3]
    BISWAL A, SRIVASTAVA P P, PAL P, et al. A multi-biomarker approach to evaluate the effect of sodium chloride in alleviating the long-term transportation stress of Labeo rohita fingerlings[J]. Aquaculture, 2021, 531: 735979. doi: 10.1016/j.aquaculture.2020.735979
    [4]
    赵忠波, 胡培培, 刘汝鹏, 等. 运输时间和MS-222浓度对翘嘴鲌皮质醇、乳酸及氧气袋内水质的影响[J]. 淡水渔业, 2016, 46(2): 94-98.
    [5]
    林琳. 环境胁迫对豹纹鳃棘鲈 (Plectropomus leopardus) 生长及血液生化指标的影响[D]. 天津: 天津农学院, 2016: 48.
    [6]
    LIU H Y, FU Z Y, YU G, et al. Effect of transport density on greater amberjack (Seriola dumerili) stress, metabolism, antioxidant capacity and immunity[J]. Front Mar Sci, 2022, 9: 1-12.
    [7]
    ZENG P, CHEN T J, SHEN J. Effects of cold acclimation and storage temperature on crucian carp (Carassius auratus gibelio) in a waterless preservation[J]. Fish Physiol Biochem, 2014, 40(3): 973-982. doi: 10.1007/s10695-013-9898-z
    [8]
    ZHANG R, WU G T, WANG X W, et al. Potential benefits of exogenous neurotransmitters in alleviating transport stress in koi carp, Cyprinus carpio[J]. Aquaculture, 2022, 558: 738409. doi: 10.1016/j.aquaculture.2022.738409
    [9]
    朱乾峰, 陈鹏文, 范秀萍, 等. 珍珠龙胆石斑鱼低温有水保活条件优化[J]. 食品工业科技, 2018, 39(22): 276-282.
    [10]
    ADINEH H, NADERI M, HAMIDI K M, et al. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density[J]. Fish Shellfish Immun, 2019, 95: 440-448. doi: 10.1016/j.fsi.2019.10.057
    [11]
    SCHELKLE B, DOETJES R, CABLE J. The salt myth revealed: treatment of gyrodactylid infections on ornamental guppies, Poecilia reticulata[J]. Aquaculture, 2011, 311(1): 74-79.
    [12]
    袁仲瑾, 岑剑伟, 李来好, 等. 低温暂养对珍珠龙胆石斑鱼存活、非特异性免疫及抗氧化指标的影响[J]. 南方水产科学, 2022, 18(6): 118-126.
    [13]
    TIE H M, FENG L, JIANG W D, et al. Dietary exogenous supplementation of nucleotides strengthens the disease resistance, antioxidant capacity and immunity in the gill of on-growing grass carp (Ctenopharyngodon idella) following a challenge with Flavobacterium columnare[J]. Aquaculture, 2021, 540: 736729. doi: 10.1016/j.aquaculture.2021.736729
    [14]
    田立立, 万金娟, 孟祥龙, 等. 高pH急性和慢性胁迫对克氏原螯虾非特异性免疫和抗氧化能力的影响[J]. 淡水渔业, 2021, 51(4): 101-107.
    [15]
    张坤, 周结倩, 范秀萍, 等. 禁食暂养对卵形鲳鲹有水保活生理响应的影响[J]. 广东海洋大学学报, 2022, 42(1): 44-49.
    [16]
    BI B L, YUAN Y, ZHAO Y, et al. Effect of crowding stress on growth performance, the antioxidant system and humoral immunity in hybrid sturgeon[J]. Aquac Rep, 2023, 28: 101468. doi: 10.1016/j.aqrep.2023.101468
    [17]
    PAN J Y, CHEN L Q, JI Y Z, et al. A crucial role in osmoregulation against hyperosmotic stress: carbohydrate and inositol metabolism in Nile tilapia (Oreochromis niloticus)[J]. Aquac Rep, 2023, 28: 101433. doi: 10.1016/j.aqrep.2022.101433
    [18]
    刘思迅, 周胜杰, 韩明洋, 等. 密度胁迫对卵形鲳鲹鱼苗运输水质、存活率、免疫酶活力和血清指标的影响[J]. 海洋科学, 2019, 43(4): 70-80.
    [19]
    BISWAL A, SRIVASTAVA P P, KRISHNA G, et al. An integrated biomarker approach for explaining the potency of exogenous glucose on transportation induced stress in Labeo rohita fingerlings[J]. Sci Rep-UK, 2021, 11(1): 5713. doi: 10.1038/s41598-021-85311-5
    [20]
    BRANDÃO F R, DUNCAN W P, FARIAS C F S, et al. Essential oils of Lippia sidoides and Mentha piperita as reducers of stress during the transport of Colossoma macropomum[J]. Aquaculture, 2022, 560: 738515. doi: 10.1016/j.aquaculture.2022.738515
    [21]
    JIANG T, SUN J L, GU Y, et al. Hypoxia alters glucose and lipid metabolisms in golden pompano (Trachinotus blochii)[J]. Aquaculture, 2023, 562: 738747. doi: 10.1016/j.aquaculture.2022.738747
    [22]
    李丹丹, 陈丕茂, 朱爱意, 等. 密度胁迫对黑鲷运输存活率及免疫酶活性的影响[J]. 南方农业学报, 2018, 49(7): 1439-1446.
    [23]
    LUO L, ZHAO Z G, ZHANG R, et al. The effects of temperature changes on the isozyme and Hsp70 levels of the Amur sturgeon, Acipenser schrenckii, at two acclimation temperatures[J]. Aquaculture, 2022, 551: 737743. doi: 10.1016/j.aquaculture.2021.737743
    [24]
    KIM J H, KIM S R, KIM S K, et al. Effects of pH changes on blood physiology, antioxidant responses and IgM of juvenile olive flounder, Paralichthys olivaceus[J]. Aquac Rep, 2021, 21: 100790.
    [25]
    ABDEL-LATIF H M R, CHAKLADER M R, SHUKRY M, et al. A multispecies probiotic modulates growth, digestive enzymes, immunity, hepatic antioxidant activity, and disease resistance of Pangasianodon hypophthalmus fingerlings[J]. Aquaculture, 2023, 563: 738948. doi: 10.1016/j.aquaculture.2022.738948
    [26]
    CHATZIDIMITRIOU E, BISACCIA P, CORRÀ F, et al. Copper/Zinc superoxide dismutase from the crocodile icefish Chionodraco hamatus: antioxidant defense at constant sub-zero temperature[J]. Antioxidants, 2020, 9(4): 325. doi: 10.3390/antiox9040325
    [27]
    SHI A Y, MA H, SHI X L, et al. Effects of microbe-derived antioxidants on growth, digestive and aminotransferase activities, and antioxidant capacities in the hepatopancreas of Eriocheir sinensis under ammonia nitrogen stress[J/OL]. Aquac Fish, 2023 [2023-09-10]. https://www.sciencedirect.com/science/article/pii/S2468550X22001927. DOI: 10.1016/j.aaf.2022.12.002.
    [28]
    ZHANG J, DING Z H, DU W G, et al. Carotenoids act on coloration and increase immunity and antioxidant activity in the novel "Yongzhang Golden turtle" strain of Pelodiscus sinensis[J]. Aquaculture, 2023, 563: 738871. doi: 10.1016/j.aquaculture.2022.738871
    [29]
    HOSEINI S M, YOUSEFI M, HOSEINIFAR S H. Cytokines' gene expression, humoral immune and biochemical responses of common carp (Cyprinus carpio, Linnaeus, 1758) to transportation density and recovery in brackish water[J]. Aquaculture, 2019, 504(15): 13-21.
    [30]
    吕伟华, 马波, 尹家胜, 等. 施氏鲟皮肤的组织学观察[J]. 水产学杂志, 2021, 34(1): 7-11.
    [31]
    FÆSTE C K, TARTOR H, MOEN A, et al. Proteomic profiling of salmon skin mucus for the comparison of sampling methods[J]. J Chromatogr B, 2020, 1138: 121965. doi: 10.1016/j.jchromb.2019.121965
    [32]
    SRIDHAR A, GUARDIOLA F A, KRISHNASAMY S R, et al. Comparative assessment of organic solvent extraction on non-specific immune defences of skin mucus from freshwater fish[J]. Aquac Int, 2022, 30(3): 1121-1138. doi: 10.1007/s10499-022-00847-1
    [33]
    WANG M, LI B, WANG J, et al. Skin transcriptome and physiological analyses reveal the metabolic and immune responses of yellow catfish (Pelteobagrus fulvidraco) to acute hypoxia[J]. Aquaculture, 2021, 546(6): 737277.
    [34]
    吉哲慧, 李清, 蒋明, 等. 杂交鲌 (翘嘴鲌♀×黑尾近红鲌♂) 消化系统形态学和组织学特征研究[J]. 淡水渔业, 2023, 53(1): 12-19.
    [35]
    CORNUAULT J K, BYATT G, PAQUET M E, et al. Zebrafish: a big fish in the study of the gut microbiota[J]. Curr Opin Biotech, 2022, 73: 308-313. doi: 10.1016/j.copbio.2021.09.007
    [36]
    WANG W Z, HUANG J S, ZHANG J D, et al. Effects of hypoxia stress on the intestinal microflora of juvenile of cobia (Rachycentron canadum)[J]. Aquaculture, 2021, 536: 736419. doi: 10.1016/j.aquaculture.2021.736419
    [37]
    WANG Q C, YE W, TAO Y F, et al. Transport stress induces oxidative stress and immune response in juvenile largemouth bass (Micropterus salmoides): analysis of oxidative and immunological parameters and the gut microbiome[J]. Antioxidants, 2023, 12(1): 157. doi: 10.3390/antiox12010157
    [38]
    付东勇, 张艺然, 褚鹏, 等. 低温胁迫对暗纹东方鲀肠道氧化应激、细胞凋亡及肠道微生物组成的影响[J]. 水产学报, 2024, 48(1): 019604.
  • Related Articles

    [1]XU Yu, HU Xiaojuan, ZHANG Song, XU Wujie, SU Haochang, WEN Guoliang, CAO Yucheng. Effect of five factors on removing ammonia nitrogen and nitrite by Rhodococcus ruber HDRR2Y fermentation[J]. South China Fisheries Science, 2023, 19(1): 67-74. DOI: 10.12131/20220044
    [2]SUN Yuanchen, XU Bingjie, CAO Yichou, XU Yingjie, QIN Fenju, YUAN Hongxia. Protective effects of addition of nano cerium oxide in diets on Eriocheir sinensis under ammonia-nitrogen and Aeromonas hydrophila stresses[J]. South China Fisheries Science, 2022, 18(3): 94-101. DOI: 10.12131/20210209
    [3]Yuting WANG, Rongxiang ZHOU, Jihong LI, Yao ZHANG, Tingting ZHOU, Wencai CHEN, Yun PENG, Manli TANG, Guizhen MA, Jianhe XU. Isolation and identification of vibrio resistant photosynthetic bacteria and degradation of nitrite nitrogen and ammonia nitrogen[J]. South China Fisheries Science, 2021, 17(5): 26-33. DOI: 10.12131/20210016
    [4]HU Xiaojuan, WEN Guoliang, TIAN Yajie, SU Haochang, XU Wujie, XU Yu, XU Yunna, CAO Yucheng. Removal effect of strain NB5 on ammonia nitrogen under different aquaculture conditions[J]. South China Fisheries Science, 2020, 16(6): 89-96. DOI: 10.12131/20200061
    [5]DING Weidong, CAO Liping, CAO Zheming, BING Xuwen. Effects of acute ammonia nitrogen stress on enzyme activities of gills and digest tract in juvenile mandarin fish (Siniperca chuatsi)[J]. South China Fisheries Science, 2020, 16(3): 31-37. DOI: 10.12131/20190188
    [6]ZHOU Falin, YANG Qibing, HUANG Jianghua, JIANG Shong, YANG Lishi, ZHANG Tangsheng, JIANG Shigui. Estimation of genetic parameters for ammonia nitrogen and freshwater tolerance traits in Penaeus monodon[J]. South China Fisheries Science, 2019, 15(5): 63-68. DOI: 10.12131/20190091
    [7]YUAN Ruipeng, LIU Jianyong, ZHANG Jiachen, CHEN Xiaoming, ZHENG Jingjing. Selection response and heritability of growth and high ammonia nitrogen tolerance in Litopenaeus vannamei[J]. South China Fisheries Science, 2017, 13(3): 83-89. DOI: 10.3969/j.issn.2095-0780.2017.03.011
    [8]HU Zhiguo, LIU Jianyong, YUAN Ruipeng, ZHANG Jiachen. Combining ability for resistance of Litopenaeus vannamei to ammonia nitrogen and dissolved oxygen[J]. South China Fisheries Science, 2016, 12(1): 43-49. DOI: 10.3969/j.issn.2095-0780.2016.01.007
    [9]XIAO Wei, LI Dayu, XU Yang, ZOU Zhiying, ZHU Jinglin, HAN Jue, YANG Hong. Effects of chronic external ammonia stress on growth, immunity and metabolism of juvenile GIFT tilapia (Oreochromis niloticus)[J]. South China Fisheries Science, 2015, 11(4): 81-87. DOI: 10.3969/j.issn.2095-0780.2015.04.012
    [10]HAN Chunyan, ZHENG Qingmei, CHEN Guidan, LIU Lixia. Effect of ammonia-N stress on non-specific immunity of tilapia (Oreochromis niloticus×O.areus)[J]. South China Fisheries Science, 2014, 10(3): 47-52. DOI: 10.3969/j.issn.2095-0780.2014.03.007
  • Cited by

    Periodical cited type(6)

    1. 朱文婷,李文嘉,宣雄智,赵娟. 渔用中草药种类、作用机理及应用效果研究进展. 中国饲料. 2024(05): 94-100 .
    2. 杨希文,祁效林,戴衍朋,金国栋,李爱堂,张金霞,冯坤蓉,覃志江. 黄芪中有效成分的提取、生物活性功能及其在动物生产中的应用. 饲料研究. 2024(03): 149-153 .
    3. 张燕,贾阳,杜涓,刘娜,王园,齐景伟,安晓萍. 偏最小二乘法和近红外光谱技术快速测定发酵黄芪茎叶中黄酮含量及抗氧化活性. 饲料研究. 2024(18): 70-75 .
    4. 孟睦涵,马林,尤宏争,李明泽,夏苏东,孙学亮,毕相东. 黄芪及其多糖在水产养殖中的应用研究进展. 现代畜牧兽医. 2024(12): 77-81 .
    5. 章晓磊,毕相东,王鑫宇,戴伟. 复方中草药茎叶好氧发酵条件优化研究. 饲料研究. 2024(23): 119-124 .
    6. 曹雪,孙佳,杨质楠,梁爽,李月红. 中草药在水产动物养殖中的研究进展. 饲料研究. 2023(24): 133-137 .

    Other cited types(1)

Catalog

    Article views (630) PDF downloads (38) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return