Citation: | XU Yu, HU Xiaojuan, ZHANG Song, XU Wujie, SU Haochang, WEN Guoliang, CAO Yucheng. Effect of five factors on removing ammonia nitrogen and nitrite by Rhodococcus ruber HDRR2Y fermentation[J]. South China Fisheries Science, 2023, 19(1): 67-74. DOI: 10.12131/20220044 |
[1] |
XU Z, CAO J, QIN X, et al. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and tissue structure in fish exposed to ammonia nitrogen: a review[J]. Animals, 2021, 11(11): 3304. doi: 10.3390/ani11113304
|
[2] |
LIANG Q, DONG W, WANG F, et al. Ficus hirta Vahl. promotes antioxidant enzyme activity under ammonia stress by inhibiting miR-2765 expression in Penaeus vannamei[J]. Ecotoxicol Environ Saf, 2021, 228: 112989. doi: 10.1016/j.ecoenv.2021.112989
|
[3] |
ZHAO C, XU J, XU X, et al. Organ-specific responses to total ammonia nitrogen stress on juvenile grass carp (Ctenopharyngodon idellus)[J]. Environ Sci Pollut Res Int, 2019, 26(11): 10826-10834. doi: 10.1007/s11356-019-04524-4
|
[4] |
WANG J, TANG H, ZHANG X, et al. Mitigation of nitrite toxicity by increased salinity is associated with multiple physiological responses: a case study using an economically important model species, the juvenile obscure puffer (Takifugu obscurus)[J]. Environ Pollut, 2018, 232: 137-145. doi: 10.1016/j.envpol.2017.09.026
|
[5] |
VALENCI A-CASTAÑEDA G, FRIAS-ESPERICUETA M G, VANEGAS-PÉREZ R C, et al. Acute toxicity of ammonia, nitrite and nitrate to shrimp Litopenaeus vannamei postlarvae in low-salinity water[J]. Bull Environ Contam Toxicol, 2018, 101(2): 229-234. doi: 10.1007/s00128-018-2355-z
|
[6] |
LI X L, MARELLA T K, TAO L, et al. The application of ceramsite ecological floating bed in aquaculture: its effects on water quality, phytoplankton, bacteria and fish production[J]. Water Sci Technol, 2018, 77(11): 2742-2750. doi: 10.2166/wst.2018.187
|
[7] |
HU X J, CAO Y C, WEN G L, et al. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems[J]. Aquac Res, 2016, 48(6): 1-15.
|
[8] |
胡晓娟, 文国梁, 李卓佳, 等. 养殖中后期高位池对虾水体微生物群落结构及水体理化因子[J]. 生态学杂志, 2018, 37(1): 171-178.
|
[9] |
胡晓娟, 文国樑, 田雅洁, 等. 不同培养条件下菌株NB5对氨氮的去除效果研究[J]. 南方水产科学, 2020, 16(6): 89-96. doi: 10.12131/20200061
|
[10] |
信艳杰, 胡晓娟, 曹煜成, 等. 光合细菌菌剂和沼泽红假单胞菌对实验水体氮磷营养盐和微生物群落的影响[J]. 南方水产科学, 2019, 15(1): 31-41. doi: 10.12131/20180144
|
[11] |
熊瑶, 刘怡霞, 刘燕, 等. 锦鲤和锦鲫类养殖水体中硝化细菌的富集和分离培养[J]. 水产科技情报, 2018, 45(1): 25-29. doi: 10.16446/j.cnki.1001-1994.2018.01.006
|
[12] |
张达娟, 张树林, 戴伟, 等. 凡纳滨对虾养殖池塘硝化细菌的分离鉴定及脱氮效果研究[J]. 水产科学, 2020, 39(2): 265-270. doi: 10.16378/j.cnki.1003-1111.2020.02.015
|
[13] |
罗固源, 汤丽娟, 许晓毅, 等. 好氧反硝化菌筛选及强化OGO反应器脱氮的研究[J]. 中国给水排水, 2010, 26(1): 16-19. doi: 10.19853/j.zgjsps.1000-4602.2010.01.006
|
[14] |
陈静, 龚艳华. 一种用于处理氨氮污水的生物制剂及其制备方法: 104630101B[P]. 2015-05-20.
|
[15] |
曹煜成, 胡晓娟, 文国樑, 等. 一种净化海水池塘养殖尾水中无机氮磷的赤红球菌HDRR2Y及其应用: 111471612A[P]. 2020-07-31.
|
[16] |
屈晓伟, 李艳宾, 张琴. 分段调控pH值对阴沟肠杆菌WL1318发酵棉秆水解糖液产氢的影响[J]. 中国酿造, 2018, 37(5): 157-161. doi: 10.11882/j.issn.0254-5071.2018.05.030
|
[17] |
王楠, 尹纪元, 王英英, 等. 草鱼源乳酸菌的分离鉴定及其生物学特性研究[J]. 南方水产科学, 2021, 17(6): 74-84. doi: 10.12131/20210039
|
[18] |
汪伟, 蔡海波, 谭文松. pH调控方式和温度对透明质酸发酵过程的影响[J]. 现代食品科技, 2019, 35(8): 207-213. doi: 10.13982/j.mfst.1673-9078.2019.8.030
|
[19] |
毛青钟, 胡金凤. 机制元红酒发酵过程优势细菌形态不同对其质量影响的研究[J]. 酿酒, 2012, 39(6): 50-54. doi: 10.3969/j.issn.1002-8110.2012.06.018
|
[20] |
周丽英, 叶仁杰, 林淑婷, 等. 水稻根际耐镉细菌的筛选与鉴定[J]. 中国生态农业学报, 2012, 20(5): 597-603.
|
[21] |
孙磊, 宋彤彤, 朱珍妮, 等. 可降解三乙胺的赤红球菌S6-2的筛选与鉴定及降解特性[J]. 环境科学研究, 2016, 29(12): 1882-1886. doi: 10.13198/j.issn.1001-6929.2016.12.17
|
[22] |
刘元利, 刘猛, 周敏, 等. 一株石油降解赤红球菌(Rhodococcus rubber)特性及处理含油废水研究[J]. 环境科学学报, 2016, 36(10): 3651-3657.
|
[23] |
张金宝, 李凤梅, 郭书海, 等. 高分子量多环芳烃降解菌筛选及在土壤电动-生物修复中应用[J]. 生态学杂志, 2020, 39(1): 260-269. doi: 10.13292/j.1000-4890.202001.002
|
[24] |
赵盼盼, 杨玉盛, 周嘉聪, 等. 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响[J]. 生态学报, 2019(8): 2676-2686.
|
[25] |
谭杰, 董滨, 戴晓虎. 温度对生物膜—活性污泥复合工艺硝化特性及硝化菌种群的影响[J]. 净水技术, 2016, 35(2): 21-25. doi: 10.3969/j.issn.1009-0177.2016.02.005
|
[26] |
魏小涵, 毕学军, 尹志轩, 等. 温度和DO对MBBR系统硝化和反硝化的影响[J]. 中国环境科学, 2019, 39(2): 612-618. doi: 10.3969/j.issn.1000-6923.2019.02.021
|
[27] |
王晓明, 王杰. 进水氨氮负荷对污水处理中硝化作用的影响[J]. 净水技术, 2017, 36(12): 90-93. doi: 10.15890/j.cnki.jsjs.2017.12.016
|
[28] |
牟春艳. 硝化细菌的培养及其对养鱼池水中氨氮的去除作用[C]//中国畜牧兽医学会. 第七届中国畜牧科技论坛论文集. 北京: 中国农业出版社, 2016: 382.
|
[29] |
WAN C, LI Z, SHEN Y, et al. Alternating nitrogen feeding strategy induced aerobic granulation: influencing conditions and mechanism[J]. J Environ Sci (China), 2021, 109: 135-147. doi: 10.1016/j.jes.2021.03.044
|
[30] |
TOMAR S K, CHAKRABORTY S. Effect of air flow rate on development of aerobic granules, biomass activity and nitrification efficiency for treating phenol, thiocyanate and ammonium[J]. J Environ Manage, 2018, 219: 178-188. doi: 10.1016/j.jenvman.2018.04.111
|
[31] |
胡鹏, 杨庆, 杨泽凡, 等. 水体中溶解氧含量与其物理影响因素的实验研究[J]. 水利学报, 2019, 50(6): 679-686. doi: 10.13243/j.cnki.slxb.20190108
|
[32] |
马宁宁. 开孔文丘里管掺气水流的水力和增氧特性研究[D]. 青岛: 中国海洋大学, 2015: 48.
|
[33] |
刘玉沛. 赤红球菌与小球藻互生关系对苯酚降解影响的研究[D]. 秦皇岛: 燕山大学, 2015: 25.
|
[34] |
祁自忠, 杨匡, 程成, 等. 固定化硝化菌群联合芽孢杆菌处理对虾养殖废水[J]. 微生物学通报, 2018, 45(9): 1922-1939. doi: 10.13344/j.microbiol.china.180358
|
[35] |
刘宗跃, 杨宏, 王少伦, 等. 硝化细菌工业化快速富集[J]. 化工学报, 2020, 71(8): 3722-3729.
|
[36] |
徐寒莉, 梁志伟, 毛巍, 等. 盐分对生物脱氮工艺中硝化反应的影响与机理[J]. 应用生态学报, 2014, 25(7): 2132-2140. doi: 10.13287/j.1001-9332.2014.0138
|
[37] |
郭姿璇, 王群, 佘宗莲. 盐度对未驯化微生物活性的影响[J]. 中国环境科学, 2017, 37(1): 181-187. doi: 10.3969/j.issn.1000-6923.2017.01.023
|
[38] |
陈天宇, 刘元国, 蔡存远, 等. 微生物盐驯化对含盐污水除氮性能的提升研究[J]. 给水排水, 2019, 45(9): 19-24. doi: 10.13789/j.cnki.wwe1964.2019.09.004
|
1. |
刘睿,梁颖,殷豆豆,宋超东,莫祖琴,肖骏峰,易晗,张红岩,张彬,申乃坤. 降解亚硝酸盐菌株Bacillus velezensis GXMZU-B1的筛选、条件优化及初步应用. 南方水产科学. 2024(04): 133-143 .
![]() |