Citation: | SUN Yuanchen, XU Bingjie, CAO Yichou, XU Yingjie, QIN Fenju, YUAN Hongxia. Protective effects of addition of nano cerium oxide in diets on Eriocheir sinensis under ammonia-nitrogen and Aeromonas hydrophila stresses[J]. South China Fisheries Science, 2022, 18(3): 94-101. DOI: 10.12131/20210209 |
[1] |
农业部渔业渔政管理局. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 24.
|
[2] |
PAN L, SI L, LIU S, et al. Levels of metabolic enzymes and nitrogenous compounds in the swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N[J]. J Ocean U China, 2018, 17(4): 957-966. doi: 10.1007/s11802-018-3574-y
|
[3] |
SEO J S, HAQUE M N, NAM S E, et al. Inorganic nitrogen compounds reduce immunity and induce oxidative stress in red seabream[J]. Fish Shellfish Immunol, 2020, 104: 237-244. doi: 10.1016/j.fsi.2020.05.072
|
[4] |
王安琪, 郭立, 崔培, 等. 不同水平低聚木糖对凡纳滨对虾生长、免疫及抗氨氮胁迫能力的影响[J]. 中国饲料, 2019(7): 56-65.
|
[5] |
彭军辉, 陈丽英, 程长洪, 等. 氨氮对拟穴青蟹的急性毒性及对其血清免疫相关酶活力的影响[J]. 渔业科学进展, 2018, 39(5): 114-121.
|
[6] |
曾媛媛, 蒋云霞, 艾春香. 氨氮胁迫对拟穴青蟹组织器官中SOD及GPX活性的影响[J]. 台湾海峡, 2011, 30(2): 210-215.
|
[7] |
成亚辉, 王子艺, 高栋业, 等. 噬菌体防治嗜水气单胞菌相关疾病的研究进展[J]. 贵州农业科学, 2020, 48(11): 48-53. doi: 10.3969/j.issn.1001-3601.2020.11.012
|
[8] |
程超, 肖敏, 李菁, 等. 嗜水气单胞菌刺激对中华绒螯蟹免疫的影响[J]. 水产科学, 2020, 39(4): 465-475.
|
[9] |
张磊. 中华鳖养殖水体的环境因子调查与机体致病菌研究[D]. 保定: 河北大学, 2009: 18-40.
|
[10] |
岳峰, 潘鲁青, 谢鹏, 等. 氨氮胁迫对三疣梭子蟹酚氧化酶原系统和免疫指标的影响[J]. 中国水产科学, 2010, 17(4): 761-770.
|
[11] |
SARAVANAKUMAR K, SATHIYASEELAN A, MARIADOSS A V A, et al. Antioxidant and antidiabetic properties of biocompatible ceria oxide (CeO2) nanoparticles in mouse fibroblast NIH3T3 and insulin resistant HepG2 cells[J]. Ceram Int, 2021, 47(6): 8618-8626. doi: 10.1016/j.ceramint.2020.11.230
|
[12] |
AMIRI F T, HAMZEH M, BEKLAR S Y, et al. Anti-apoptotic and antioxidant effect of cerium oxide nanoparticles on cyclophosphamide-induced hepatotoxicity[J]. Erciyes Med J, 2018, 40(3): 148-54. doi: 10.5152/etd.2018.0016
|
[13] |
ADEBAYO O A, AKINLOYE O, ADARAMOYE O A. Cerium oxide nanoparticles attenuate oxidative stress and inflammation in the liver of diethylnitrosamine-treated mice[J]. Biol Trace Elem Res, 2020, 193(1): 214-225. doi: 10.1007/s12011-019-01696-5
|
[14] |
QIN F, SHEN T, YANG H, et al. Dietary nano cerium oxide promotes growth, relieves ammonia nitrogen stress, and improves immunity in crab (Eriocheir sinensis)[J]. Fish Shellfish Immun, 2019, 92: 367-376. doi: 10.1016/j.fsi.2019.06.019
|
[15] |
ZHAO J H, LAM T J, GUO J Y. Acute toxicity of ammonia to the early stage ‐ larvae and juveniles of Eriocheir sinensis H. Milne-Edwards, 1853 (Decapoda: Grapsidae) reared in the laboratory[J]. Aquac Res, 1997, 28(7): 517-525. doi: 10.1111/j.1365-2109.1997.tb01070.x
|
[16] |
CONG M, WU H, CAO T, et al. Digital gene expression analysis in the gills of Ruditapes philippinarum exposed to short-and long-term exposures of ammonia nitrogen[J]. Aquat Toxicol, 2018, 194: 121-131. doi: 10.1016/j.aquatox.2017.11.012
|
[17] |
FRÍAS-ESPERICUETA M G, HARFUSH-MELENDEZ M, OSUNA-LÓPEZ J I, et al. Acute toxicity of ammonia to juvenile shrimp Penaeus vannamei Boone[J]. Bull Environ Contam Toxicol, 1999, 62(5): 646-652. doi: 10.1007/s001289900923
|
[18] |
CHENG C H, YANG F F, LIAO S A, et al. Effect of acute ammonia exposure on expression of GH/IGF axis genes GHR1, GHR2 and IGF-1 in pufferfish (Takifugu obscurus)[J]. Fish Physiol Biochem, 2015, 41(2): 495-507. doi: 10.1007/s10695-015-0025-1
|
[19] |
黄鹤忠, 李义, 宋学宏, 等. 氨氮胁迫对中华绒螯蟹 (Eriocheir sinensis) 免疫功能的影响[J]. 海洋与湖沼, 2006, 37(3): 198-205. doi: 10.3321/j.issn:0029-814X.2006.03.002
|
[20] |
SHI M, JIANG S, LI Y, et al. Comprehensive expression analysis of the beta integrin from Penaeus monodon indicating its participation in innate immunity and ammonia nitrogen stress response[J]. Fish Shellfish Immunol, 2020, 98: 887-898. doi: 10.1016/j.fsi.2019.11.049
|
[21] |
HIRST S M, KARAKOTO A, SINGH S, et al. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice[J]. Environ Toxicol, 2013, 28(2): 107-118. doi: 10.1002/tox.20704
|
[22] |
AMIN K A, HASSAN M S, AWAD E S T, et al. The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline[J]. Int J Nanomedicine, 2011, 6: 143. doi: 10.2217/nnm.10.139
|
[23] |
CHECA J, ARAN J M. Reactive oxygen species: drivers of physiological and pathological processes[J]. J Inflamm Res, 2020, 13: 1057-1073. doi: 10.2147/JIR.S275595
|
[24] |
ABRAMOV A Y, POTAPOVA E V, DREMIN V V, et al. Interaction of oxidative stress and misfolded proteins in the mechanism of neurodegeneration[J]. Life (Basel), 2020, 10(7): 101.
|
[25] |
BARBOSA M L, de Meneses A A P M, de AGUIAR R P S, et al. Oxidative stress, antioxidant defense and depressive disorders: a systematic review of biochemical and molecular markers[J]. Neurol Psychiatry Brain Res, 2020, 36: 65-72. doi: 10.1016/j.npbr.2020.02.006
|
[26] |
JING H, ZHANG Q, GAO X J. Excessive lithium of water induced a toxic effect on kidney via oxidative damage and inflammation in carp[J]. Aquaculture, 2020, 535(5): 736282.
|
[27] |
DONG J, CHENG R, YANG Y, et al. Effects of dietary taurine on growth, non-specific immunity, anti-oxidative properties and gut immunity in the Chinese mitten crab Eriocheir sinensis[J]. Fish Shellfish Immunol, 2018, 82: 212-219. doi: 10.1016/j.fsi.2018.08.029
|
[28] |
YANG X, SHI A, SONG Y, et al. The effects of ammonia-N stress on immune parameters, antioxidant capacity, digestive function, and intestinal microflora of Chinese mitten crab, Eriocheir sinensis, and the protective effect of dietary supplement of melatonin[J]. Comp Biochem Phys C, 2021, 250: 109127.
|
[29] |
SINHA A K, ABDEIGAWAD H, GIBLEN T, et al. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress[J]. PLOS ONE, 2014, 9(4): e95319. doi: 10.1371/journal.pone.0095319
|
[30] |
管敏, 张德志, 唐大明. 慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化, 免疫指标的影响[J]. 南方水产科学, 2020, 16(2): 36-42. doi: 10.12131/20190191
|
[31] |
洪美玲, 陈立侨, 顾顺樟, 等. 氨氮胁迫对中华绒螯蟹免疫指标及肝胰腺组织结构的影响[J]. 中国水产科学, 2007, 14(3): 412-418. doi: 10.3321/j.issn:1005-8737.2007.03.010
|
[32] |
WEI J, YU N, TIAN W, et al. Dietary vitamin B12 requirement and its effect on non-specific immunity and disease resistance in juvenile Chinese mitten crab Eriocheir sinensis[J]. Aquaculture, 2014, 434: 179-183. doi: 10.1016/j.aquaculture.2014.08.010
|
[33] |
LIU F, QU Y K, GENG C, et al. Effects of hesperidin on the growth performance, antioxidant capacity, immune responses and disease resistance of red swamp crayfish (Procambarus clarkii)[J]. Fish Shellfish Immunol, 2020, 99: 154-166. doi: 10.1016/j.fsi.2020.02.014
|
[34] |
XUE Q, RENAULT T. Enzymatic activities in European flat oyster, Ostrea edulis, and Pacific oyster, Crassostrea gigas, hemolymph[J]. J Invertebr Pathol, 2000, 76(3): 155-163. doi: 10.1006/jipa.2000.4965
|
[35] |
SAURABH S, SAHOO P K. Lysozyme: an important defence molecule of fish innate immune system[J]. Aquac Res, 2008, 39(3): 223-239. doi: 10.1111/j.1365-2109.2007.01883.x
|
[36] |
RAGLAND S A, CRISS A K. From bacterial killing to immune modulation: recent insights into the functions of lysozyme[J]. PLOS Pathog, 2017, 13(9): e1006512. doi: 10.1371/journal.ppat.1006512
|
[37] |
MOCK A, PETERS G. Lysozyme activity in rainbow trout, Oncorhynchus mykiss (Walbaum), stressed by handling, transport and water pollution[J]. J Fish Biol, 1990, 37(6): 873-885. doi: 10.1111/j.1095-8649.1990.tb03591.x
|
[38] |
KUEBUTORNYE F K A, WANG Z, LU Y, et al. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection[J]. Fish Shellfish Immunol, 2020, 97: 83-95. doi: 10.1016/j.fsi.2019.12.046
|
[39] |
艾春香, 曾媛媛. 氨氮胁迫对拟穴青蟹腺苷三磷酸酶和磷酸酶比活力的影响[J]. 厦门大学学报 (自然科学版), 2011, 50(4): 772-778.
|
[40] |
REDLING K. Rare earth elements in agriculture with emphasis on animal husbandry[D]. Muenchen: Diss Ludwig-Maximilians-Universitaet, 2006: 325.
|
[41] |
PAEMEL M V, DIERICK N, JANSSENS G, et al. Selected trace and ultratrace elements: biological role, content in feed and requirements in animal nutrition-elements for risk assessment[J]. EFSA Supporting Publications, 2010, 7(7): 68E.
|
1. |
姚紫荆,杨晓明,吴峰,田思泉. 基于参数最优地理探测器的南太平洋长鳍金枪鱼渔业资源分布驱动力研究. 海洋渔业. 2025(02): 153-162 .
![]() | |
2. |
张鸿霖,马有成,宋厚成,张健,曾志坚. 基于结构方程模型研究环境因子对毛里塔尼亚双拖鲣CPUE的影响. 中国水产科学. 2024(04): 465-475 .
![]() | |
3. |
王月,杨晓明,朱江峰. 中西太平洋自由群鲣资源丰度序列的振荡模态分析. 海洋渔业. 2024(03): 266-274 .
![]() | |
4. |
刘志强,郭绍健,王禹程,周成,吴峰,万荣. 中西太平洋金枪鱼延绳钓钓钩深度分布及其影响因素. 上海海洋大学学报. 2024(04): 1020-1030 .
![]() | |
5. |
范江涛,冯志萍,余为,马胜伟,陈新军. 南海鸢乌贼栖息地模型优化及季节性差异分析. 海洋湖沼通报(中英文). 2024(05): 111-120 .
![]() | |
6. |
杨诗玉,冯佶,李亚楠,朱江峰. 基于气候变化因子的印度洋长鳍金枪鱼资源评估. 南方水产科学. 2024(06): 84-94 .
![]() | |
7. |
何露雪,付东洋,李忠炉,王焕,孙琰,刘贝,余果. 南海西北部蓝圆鲹时空分布及其与环境因子的关系. 渔业科学进展. 2023(01): 24-34 .
![]() | |
8. |
王啸,刘文俊,张健. 基于ARIMA的海洋尼诺指数对中西太平洋黄鳍金枪鱼年际CPUE的影响. 南方水产科学. 2023(04): 10-20 .
![]() | |
9. |
郑好好,杨晓明,朱江峰. 基于多尺度地理加权回归模型的中西太平洋围网鲣渔获率环境影响机制研究. 南方水产科学. 2023(05): 1-10 .
![]() |