WANG Shuxian, ZHANG Shengmao, DAI Yang, WANG Yongjin, SUI Jianghua, ZHU Wenbin. Research on calculating fishing depth of krill by sonar data[J]. South China Fisheries Science, 2021, 17(4): 91-97. DOI: 10.12131/20210020
Citation: WANG Shuxian, ZHANG Shengmao, DAI Yang, WANG Yongjin, SUI Jianghua, ZHU Wenbin. Research on calculating fishing depth of krill by sonar data[J]. South China Fisheries Science, 2021, 17(4): 91-97. DOI: 10.12131/20210020

Research on calculating fishing depth of krill by sonar data

More Information
  • Received Date: January 12, 2021
  • Revised Date: April 13, 2021
  • Accepted Date: April 26, 2021
  • Available Online: May 07, 2021
  • In order to determine the trawl depth quickly, improve the fishing efficiency and reduce the cost of fishery production, the paper proposes a method for calculating the optimal fishing depth of the specified fish target based on the sonar device metadata. Sonar device metadata structure is relatively complex and contains much redundant data. In the paper, the original data were simplified, and the information of seabed depth and target strength was calculated and extracted. The effective data range and noise data range were determined according to the type of target fishery resources. After filtering the noise data, the effective data was displayed in the form of statistical chart. The target fishery resources of each depth were counted. The relationship between depth and target fishery resources was constructed, and the optimal fishing depth was calculated and predicted by various methods. The results show that the optimal fishing depth of krill (Euphausia superba, target intensity −69.5–−40.8 dB) was 172.9–187 m in the survey area. According to the sonar data obtained in a certain sea area over a period of time, the optimal fishing depth of the target fishery resources in that sea area can be calculated quickly.
  • [1]
    孔德平, 秦涛, 范亦农, 等. 邛海鱼类资源与空间分布的水声学调查[J]. 水生态学杂志, 2019, 40(1): 22-29.
    [2]
    王崇瑞, 索纹纹, 蒋国民, 等. 东洞庭湖长江江豚及其与鱼类资源相关性[J]. 中国环境科学, 2019, 39(10): 4424-4434. doi: 10.3969/j.issn.1000-6923.2019.10.048
    [3]
    WHITMORE B M, NICKELS C F, OHMAN M D. A comparison between zooglider and shipboard net and acoustic mesozooplankton sensing systems[J]. J Plank Res, 2019, 41(4): 521-533. doi: 10.1093/plankt/fbz033
    [4]
    彭松耀, 赖子尼, 麦永湛. 珠江口大型底栖动物数量与生物多样性的分布特征[J]. 海洋渔业, 2019, 41(3): 266-277. doi: 10.3969/j.issn.1004-2490.2019.03.002
    [5]
    DENIS V, FAN T Y, HSIAO W V, et al. Idea paper: tracking the distribution of accretive reef communities across the Kuroshio region[J]. Ecol Res, 2020, 35(4): 595-598. doi: 10.1111/1440-1703.12128
    [6]
    ELENA R, SERGEY G, ANDREY G, et al. Vertical distribution of megafauna on the Bering Sea slope based on ROV survey[J]. PeerJ, 2020, 8(1): 1-26.
    [7]
    JORDA G, MARBÀ N, BENNETT S, et al. Ocean warming compresses the three-dimensional habitat of marine life[J]. Nat Ecol Evol, 2020, 4(1): 109-114. doi: 10.1038/s41559-019-1058-0
    [8]
    王腾, 朱国平, 童剑锋, 等. 南极南奥克尼群岛2017年春季南极磷虾资源声学评估[J]. 中国水产科学, 2019, 26(2): 333-341.
    [9]
    朱国平, 杨洋, 王芮, 等. 采用声学方法研究2016年秋季布兰斯菲尔德海峡南极磷虾群昼夜垂直移动特征及其影响因素[J]. 水产学报, 2018, 42(10): 1541-1549.
    [10]
    王腾. 南奥克尼群岛海域南极磷虾声学评估[D]. 上海: 上海海洋大学, 2018: 22-24.
    [11]
    曹亮, 曹瑞岐. 水下刚性椭球体目标强度的角度分布特性研究[J]. 舰船电子工程, 2020, 40(1): 180-183. doi: 10.3969/j.issn.1672-9730.2020.01.043
    [12]
    BAKHTIAR D, JAYA I, MANIK H M, et al. Analysis of reef fish target strength through ex-situ measurement using acoustic methods[J]. Eur Food Res Technol, 2020, 14(5): 53-61.
    [13]
    WU X, SU L, WANG K, et al. GPU-accelerated calculation of acoustic echo characteristics of underwater targets[C]. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), 2020: 227-231.
    [14]
    MOULIN E, NYRKOVA I A, GIUSEPPONE N, et al. Homodyne dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in intensity correlation function[J]. Soft Matter, 2020, 16(12): 2971-2993. doi: 10.1039/C9SM02480H
    [15]
    WANG Y, YU W, WANG C, et al. A modified four-component decomposition method with refined volume scattering models[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13: 1946-1958.
    [16]
    李斌, 陈国宝, 曾雷, 等. 多鳞目标强度的模型法研究[J]. 中国水产科学, 2018, 25(2): 403-412.
    [17]
    王金明, 孙扬, 毕福洋, 等. 鱼类目标强度测量方法及应用[J]. 科学技术创新, 2018, 10(7): 21-23. doi: 10.3969/j.issn.1673-1328.2018.07.010
    [18]
    王俊洁, 刘青. 基于谱聚类的自适应新生目标强度状态提取[J]. 计算机工程与设计, 2019, 40(3): 874-878.
    [19]
    官文江, 吴佳文, 曹友华. 利用后向预报方法分析印度洋黄鳍金枪鱼资源评估模型[J]. 中国海洋大学学报(自然科学版), 2020, 50(2): 52-59.
    [20]
    GREENE C H, STANTON T K, WIEBE P H, et al. Acoustic estimates of Antarctic krill[J]. Nature, 1991, 349(6305): 110-110. doi: 10.1038/349110a0
    [21]
    DEMER D A, MARTIN L V. Zooplankton target strength: volumetric or areal dependence?[J]. J Acoust Soc Am, 1995, 98(2): 1111-1118. doi: 10.1121/1.413609
    [22]
    BASSETT C, LAVERY A C, STANTON T K. Broadband measurements of the acoustic target strength of mesopelagic fishes[J]. J Acoust Soc Am, 2019, 146(4): 2772.
    [23]
    PALERMINO A, de FELICE A, CANDUCI G, et al. First target strength measurement of Trachurus mediterraneus and Scomber colias in the Mediterranean Sea[J]. Fish Res, 2021, 240: 1-10.
    [24]
    史登福, 张魁, 陈作志. 基于生活史特征的数据有限条件下渔业资源评估方法比较[J]. 中国水产科学, 2020, 27(1): 12-24.
    [25]
    刘岩, 吴忠鑫, 杨长平, 等. 基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算[J]. 南方水产科学, 2019, 15(4): 19-28. doi: 10.12131/20180265
    [26]
    张俊, 邱永松, 陈作志, 等. 南海外海大洋性渔业资源调查评估进展[J]. 南方水产科学, 2018, 14(6): 118-127. doi: 10.12131/20180037
    [27]
    黄朔, 李连翔, 刀微, 等. 泸沽湖鱼类空间分布特征分析与资源量评估[J]. 南方水产科学, 2020, 16(1): 53-61. doi: 10.12131/20190180
    [28]
    王言丰, 胡启伟, 余景, 等. 粤东柘林湾海洋牧场渔业资源增殖效果评估[J]. 南方水产科学, 2019, 15(2): 12-19. doi: 10.12131/20180143
  • Related Articles

    [1]LIN Liqun, ZHANG Yaoming, LIU Ping, XU Zhiqiang, CUI Mingchao. Influencing factors of gas-liquid two-phase flow in oxygenation speece cone of aquaculture tanks[J]. South China Fisheries Science, 2025, 21(3): 36-43. DOI: 10.12131/20240224
    [2]JIANG Manju, GUO Yu, QIN Chuanxin, XIN Yi, ZHAO Xinran, YU Gang, MA Zhenhua, YANG Yukai. Investigation on behavioral preferences of Lutjanus erythropterus juvenile towards artificial reef models with different pore shapes and sizes[J]. South China Fisheries Science, 2024, 20(5): 42-52. DOI: 10.12131/20240135
    [3]HUANG Li, GAO Lei, WU Song, HAO Qirui, LI Chenhui, TANG Shizhan, BAI Shuyan, CHEN Zhongxiang, DU Ningning, QIN Dongli, WANG Peng. Variation and accumulation characteristics of diazepam in simulated culture environment[J]. South China Fisheries Science, 2024, 20(2): 38-47. DOI: 10.12131/20230128
    [4]HONG Yongqiang,  XIE Yonghe,  LIU Luqiang,  DONG Shaoguang,  LI Detang,  WANG Yunjie,  JIANG Xuyang,  ZHANG Jiaqi,  WANG Jun,  GAO Weipeng,  CHEN Qing. Research on water quality dissolved oxygen prediction method based on ESSA-LSTM for aquaculture ships[J]. South China Fisheries Science, 2024, 20(1): 62-73. DOI: 10.12131/20230185
    [5]ZHANG Jiaqi, XIE Yonghe, LI Detang, GAO Weipeng, CHEN Qing, WANG Jun, WANG Yunjie, HONG Yongqiang. Structural design and research of underwater robot for aquaculture ship operation[J]. South China Fisheries Science, 2024, 20(1): 11-24. DOI: 10.12131/20230192
    [6]XING Wang, HUANG Xiaohua, LI Gen, PANG Guoliang, YUAN Taiping. Construction of a dynamics simulation system for net cleaning robot based on Gazebo[J]. South China Fisheries Science, 2024, 20(1): 1-10. DOI: 10.12131/20230189
    [7]SU Huifeng, DING Lesheng, WANG Xuwang, CHEN Musheng, CHEN Xiao. Prediction of dissolved oxygen in water of aquaculture ship based on CNN-GRU hybrid model[J]. South China Fisheries Science, 2023, 19(4): 174-180. DOI: 10.12131/20220298
    [8]HU Yu, HUANG Xiaohua, TAO Qiyou, YUAN Taiping, WANG Shaomin, LIU Haiyang. Simulation of automatic pneumatic conveying process of automatic feeding system based on computational fluid dynamics-discrete element method[J]. South China Fisheries Science, 2019, 15(3): 113-119. DOI: 10.12131/20180219
    [9]HU Yu, GUO Genxi, HUANG Xiaohua, TAO Qiyou, ZHANG Xiaoming. Simulation of flow field inside the net cleaning machine based on ANSYS[J]. South China Fisheries Science, 2010, 6(1): 7-11. DOI: 10.3969/j.issn.1673-2227.2010.01.002
    [10]LI Min, ZHU Changbo, ZHANG Hanhua, CHEN Lixiong, WU Jinfeng. Effects of diets acclimation on the feeding preference of juvenile black abalone[J]. South China Fisheries Science, 2007, 3(4): 14-19.
  • Cited by

    Periodical cited type(4)

    1. 刘鸿,米乃瓦尔·木衣提,胡江伟,贺疆滔,张涛,杨博文,牛建功. 不同荧光标记物对扁吻鱼标记效果的对比观察. 黑龙江水产. 2025(03): 243-253 .
    2. 王纪鹏,虢有婕,韩毅,张龙涛,缪松,郑宝东. pH敏感性材料在智能食品包装中的应用进展. 食品工业科技. 2023(01): 48-55 .
    3. 祝超文,张虎,贲成恺,袁健美,胡海生,肖悦悦. 江苏近岸海域大黄鱼标记放流及效果评估. 水产养殖. 2023(06): 1-9 .
    4. 冯瑞玉,郭禹,李金明,孙金辉,于刚,吴一桂,秦传新. 基于EnhanceFish模型的鱼类增殖放流策略研究:以中山市南朗水域黄鳍棘鲷增殖放流为例. 渔业科学进展. 2023(05): 1-10 .

    Other cited types(3)

Catalog

    Recommendations
    Water quality evaluation foreriocheir sinensisaquaculture ponds with different aquatic plants
    HUA Qinghong et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Progress in study and application of fish bioenergetics models
    ZHANG Xianbing et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network
    XU Bo et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Study on diurnal and nocturnal variation of fish resources in marine ranching by fixed-point monitoring based on acoustic technology
    CHENG Gao et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    The system establishment of improved seed, healthy aquaculture and high-quality sales of fish
    WANG Shi et al., JOURNAL OF FISHERIES OF CHINA, 2023
    Flow velocity on fish and its application in recirculating aquaculture system
    ZHU Ting-Yao et al., ACTA HYDROBIOLOGICA SINICA, 2025
    The contribution of aquaculture systems to global aquaculture production
    Verdegem, Marc et al., JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2023
    Semantic-preserved communication system for highly efficient speech transmission
    Han, Tianxiao et al., IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023
    Ship formation and route optimization design based on improved pso and d-p algorithm
    IEEE ACCESS, 2025
    A novel optimization framework for efficiently identifying high-quality pareto-optimal solutions: maximizing resilience of water distribution systems under cost constraints
    RELIABILITY ENGINEERING & SYSTEM SAFETY
    Powered by
    Article views (1061) PDF downloads (52) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return