WANG Shuxian, ZHANG Shengmao, DAI Yang, WANG Yongjin, SUI Jianghua, ZHU Wenbin. Research on calculating fishing depth of krill by sonar data[J]. South China Fisheries Science, 2021, 17(4): 91-97. DOI: 10.12131/20210020
Citation: WANG Shuxian, ZHANG Shengmao, DAI Yang, WANG Yongjin, SUI Jianghua, ZHU Wenbin. Research on calculating fishing depth of krill by sonar data[J]. South China Fisheries Science, 2021, 17(4): 91-97. DOI: 10.12131/20210020

Research on calculating fishing depth of krill by sonar data

More Information
  • Received Date: January 12, 2021
  • Revised Date: April 13, 2021
  • Accepted Date: April 26, 2021
  • Available Online: May 07, 2021
  • In order to determine the trawl depth quickly, improve the fishing efficiency and reduce the cost of fishery production, the paper proposes a method for calculating the optimal fishing depth of the specified fish target based on the sonar device metadata. Sonar device metadata structure is relatively complex and contains much redundant data. In the paper, the original data were simplified, and the information of seabed depth and target strength was calculated and extracted. The effective data range and noise data range were determined according to the type of target fishery resources. After filtering the noise data, the effective data was displayed in the form of statistical chart. The target fishery resources of each depth were counted. The relationship between depth and target fishery resources was constructed, and the optimal fishing depth was calculated and predicted by various methods. The results show that the optimal fishing depth of krill (Euphausia superba, target intensity −69.5–−40.8 dB) was 172.9–187 m in the survey area. According to the sonar data obtained in a certain sea area over a period of time, the optimal fishing depth of the target fishery resources in that sea area can be calculated quickly.
  • [1]
    孔德平, 秦涛, 范亦农, 等. 邛海鱼类资源与空间分布的水声学调查[J]. 水生态学杂志, 2019, 40(1): 22-29.
    [2]
    王崇瑞, 索纹纹, 蒋国民, 等. 东洞庭湖长江江豚及其与鱼类资源相关性[J]. 中国环境科学, 2019, 39(10): 4424-4434. doi: 10.3969/j.issn.1000-6923.2019.10.048
    [3]
    WHITMORE B M, NICKELS C F, OHMAN M D. A comparison between zooglider and shipboard net and acoustic mesozooplankton sensing systems[J]. J Plank Res, 2019, 41(4): 521-533. doi: 10.1093/plankt/fbz033
    [4]
    彭松耀, 赖子尼, 麦永湛. 珠江口大型底栖动物数量与生物多样性的分布特征[J]. 海洋渔业, 2019, 41(3): 266-277. doi: 10.3969/j.issn.1004-2490.2019.03.002
    [5]
    DENIS V, FAN T Y, HSIAO W V, et al. Idea paper: tracking the distribution of accretive reef communities across the Kuroshio region[J]. Ecol Res, 2020, 35(4): 595-598. doi: 10.1111/1440-1703.12128
    [6]
    ELENA R, SERGEY G, ANDREY G, et al. Vertical distribution of megafauna on the Bering Sea slope based on ROV survey[J]. PeerJ, 2020, 8(1): 1-26.
    [7]
    JORDA G, MARBÀ N, BENNETT S, et al. Ocean warming compresses the three-dimensional habitat of marine life[J]. Nat Ecol Evol, 2020, 4(1): 109-114. doi: 10.1038/s41559-019-1058-0
    [8]
    王腾, 朱国平, 童剑锋, 等. 南极南奥克尼群岛2017年春季南极磷虾资源声学评估[J]. 中国水产科学, 2019, 26(2): 333-341.
    [9]
    朱国平, 杨洋, 王芮, 等. 采用声学方法研究2016年秋季布兰斯菲尔德海峡南极磷虾群昼夜垂直移动特征及其影响因素[J]. 水产学报, 2018, 42(10): 1541-1549.
    [10]
    王腾. 南奥克尼群岛海域南极磷虾声学评估[D]. 上海: 上海海洋大学, 2018: 22-24.
    [11]
    曹亮, 曹瑞岐. 水下刚性椭球体目标强度的角度分布特性研究[J]. 舰船电子工程, 2020, 40(1): 180-183. doi: 10.3969/j.issn.1672-9730.2020.01.043
    [12]
    BAKHTIAR D, JAYA I, MANIK H M, et al. Analysis of reef fish target strength through ex-situ measurement using acoustic methods[J]. Eur Food Res Technol, 2020, 14(5): 53-61.
    [13]
    WU X, SU L, WANG K, et al. GPU-accelerated calculation of acoustic echo characteristics of underwater targets[C]. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), 2020: 227-231.
    [14]
    MOULIN E, NYRKOVA I A, GIUSEPPONE N, et al. Homodyne dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in intensity correlation function[J]. Soft Matter, 2020, 16(12): 2971-2993. doi: 10.1039/C9SM02480H
    [15]
    WANG Y, YU W, WANG C, et al. A modified four-component decomposition method with refined volume scattering models[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13: 1946-1958.
    [16]
    李斌, 陈国宝, 曾雷, 等. 多鳞目标强度的模型法研究[J]. 中国水产科学, 2018, 25(2): 403-412.
    [17]
    王金明, 孙扬, 毕福洋, 等. 鱼类目标强度测量方法及应用[J]. 科学技术创新, 2018, 10(7): 21-23. doi: 10.3969/j.issn.1673-1328.2018.07.010
    [18]
    王俊洁, 刘青. 基于谱聚类的自适应新生目标强度状态提取[J]. 计算机工程与设计, 2019, 40(3): 874-878.
    [19]
    官文江, 吴佳文, 曹友华. 利用后向预报方法分析印度洋黄鳍金枪鱼资源评估模型[J]. 中国海洋大学学报(自然科学版), 2020, 50(2): 52-59.
    [20]
    GREENE C H, STANTON T K, WIEBE P H, et al. Acoustic estimates of Antarctic krill[J]. Nature, 1991, 349(6305): 110-110. doi: 10.1038/349110a0
    [21]
    DEMER D A, MARTIN L V. Zooplankton target strength: volumetric or areal dependence?[J]. J Acoust Soc Am, 1995, 98(2): 1111-1118. doi: 10.1121/1.413609
    [22]
    BASSETT C, LAVERY A C, STANTON T K. Broadband measurements of the acoustic target strength of mesopelagic fishes[J]. J Acoust Soc Am, 2019, 146(4): 2772.
    [23]
    PALERMINO A, de FELICE A, CANDUCI G, et al. First target strength measurement of Trachurus mediterraneus and Scomber colias in the Mediterranean Sea[J]. Fish Res, 2021, 240: 1-10.
    [24]
    史登福, 张魁, 陈作志. 基于生活史特征的数据有限条件下渔业资源评估方法比较[J]. 中国水产科学, 2020, 27(1): 12-24.
    [25]
    刘岩, 吴忠鑫, 杨长平, 等. 基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算[J]. 南方水产科学, 2019, 15(4): 19-28. doi: 10.12131/20180265
    [26]
    张俊, 邱永松, 陈作志, 等. 南海外海大洋性渔业资源调查评估进展[J]. 南方水产科学, 2018, 14(6): 118-127. doi: 10.12131/20180037
    [27]
    黄朔, 李连翔, 刀微, 等. 泸沽湖鱼类空间分布特征分析与资源量评估[J]. 南方水产科学, 2020, 16(1): 53-61. doi: 10.12131/20190180
    [28]
    王言丰, 胡启伟, 余景, 等. 粤东柘林湾海洋牧场渔业资源增殖效果评估[J]. 南方水产科学, 2019, 15(2): 12-19. doi: 10.12131/20180143
  • Related Articles

    [1]HE Zheng, ZHU Changbo, SU Jiaqi. Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities of Litopenaeus vannamei under SO4 2−/Cl stress in low saline water[J]. South China Fisheries Science, 2025, 21(2): 118-126. DOI: 10.12131/20240231
    [2]MA Bin, SU Hang, XU Yongjiang, CUI Aijun, JIANG Yan, YAN Han, FENG Yuan, GONG Yanjun, FENG Dejun. Effects of alginate oligosaccharide on growth performance, physiological indicators and intestinal morphology of Lateolabrax maculatus juvenile[J]. South China Fisheries Science, 2024, 20(3): 76-84. DOI: 10.12131/20240022
    [3]BAO Yuhang, ZHANG Xinyu, YIN Shangjun, ZHANG Haiqi, XU Jiehao. Effects of Chinese herbal compound on intestinal microbiota and non-specific immune function of Pelodiscus sinensis[J]. South China Fisheries Science, 2023, 19(5): 86-94. DOI: 10.12131/20230069
    [4]TIAN Yu, JIE Yukun, ZENG Xiangbing, YUE Yan, LIU Guangxin, CHENG Changhong, MA Hongling, GUO Zhixun. Effect of density on antioxidant and nonspecific immunity of mud crab (Scylla paramamosain)[J]. South China Fisheries Science, 2023, 19(3): 60-67. DOI: 10.12131/20220312
    [5]YUAN Zhongjin, CEN Jianwei, LI Laihao, YANG Xianqing, HUANG Hui, WEI Ya, HAO Shuxian, ZHAO Yongqiang, WANG Yueqi, LIN Zhi. Effect of low-temperature acclimation on survival, non-specific immune and antioxidant indexes of Epinephelus fuscoguttatus ♀×E. lanceolatus[J]. South China Fisheries Science, 2022, 18(6): 118-126. DOI: 10.12131/20220042
    [6]HAN Chunyan, ZHENG Qingmei, CHEN Guidan, LIU Lixia. Effect of ammonia-N stress on non-specific immunity of tilapia (Oreochromis niloticus×O.areus)[J]. South China Fisheries Science, 2014, 10(3): 47-52. DOI: 10.3969/j.issn.2095-0780.2014.03.007
    [7]ZHANG Jiarun, LIN Heizhao, HUANG Zhong, NIU Jin, ZHOU Falin, CHEN Xu, WANG Yun, XIA Dongmei. Effects of plant proteins supplemented with amino acids on growth and non-specific immunity of Penaeus monodon[J]. South China Fisheries Science, 2013, 9(5): 44-50. DOI: 10.3969/j.issn.2095-0780.2013.05.008
    [8]LIN Heizhao, YUAN Fenghua, LI Zhuojia, LU Xin, YANG Qibin, CHEN Xu. Effects of dietary photosynthetic bacteria PS2 on growth performance, digestive enzymes and nonspecific immune enzymes of sea bass (Lates calcarifer)[J]. South China Fisheries Science, 2010, 6(1): 25-29. DOI: 10.3969/j.issn.1673-2227.2010.01.005
    [9]WU Lan, XIE Jun, WANG Guangjun, YU Deguang, HU Chaoying, NIU Jifeng. Effect of the metalloprotease on growth performance, digestibility and non-specific immune of hybrid tilapia Oreochromis niloticus × O.aureus[J]. South China Fisheries Science, 2007, 3(3): 8-13.
    [10]XIE Yirong, WU Ruiquan, XIE Jun, YE Fuliang, CHEN Gang, WANG Guangjun, GUAN Shengjun. Effect of dietary vitamin C on growth and non-specific immunity of largemouth bass, Micropterus salmoides[J]. South China Fisheries Science, 2006, 2(3): 40-45.
  • Cited by

    Periodical cited type(11)

    1. 李兵部,傅建军,陶易凡,强俊,徐跑. 基于D-loop序列和微卫星标记的4个黄颡鱼群体的遗传变异分析. 黑龙江畜牧兽医. 2024(04): 115-127 .
    2. 胡玉婷,凌俊,江河,汪焕,潘庭双,段国庆,周华兴,杨敏,李彤. 苏皖地区中华绒螯蟹养殖群体微卫星遗传多样性的评估. 渔业科学进展. 2024(06): 178-187 .
    3. 李大命,杨子萍,刘燕山,谷先坤,殷稼雯,蔡永久,唐晟凯,张彤晴. 基于线粒体COI序列的江淮下游湖泊鲢群体遗传多样性和遗传结构分析. 淡水渔业. 2023(04): 3-11 .
    4. 宋立民,王娜,郑英珍,丁子元,刘肖莲,姜巨峰,张韦,耿绪云. 基于微卫星标记技术的5个黄颡鱼群体遗传多样性分析. 经济动物学报. 2023(02): 101-108 .
    5. 葛锐,强壮,聂竹兰,李丽,魏杰. 基于高通量转录组测序的斑重唇鱼SSR分布及序列特征分析. 南方农业学报. 2023(03): 806-814 .
    6. 邹利,王金龙,李传武,王冬武,曾春芳,刘明求,刘丽,谢敏,曾鸣. 稻田适养品种呆鲤的遗传多样性分析. 水产科学. 2023(05): 795-804 .
    7. 黄皓,范嗣刚,王鹏飞,陈佳,赵超,闫路路,邱丽华,潘滢. 基于微卫星标记对6个花鲈群体的遗传多样性分析. 南方水产科学. 2022(01): 99-106 . 本站查看
    8. 胡玉婷,凌俊,江河,汪焕,潘庭双,周华兴. 中华绒螯蟹4个养殖群体遗传多样性与遗传结构分析. 江苏农业科学. 2022(16): 54-59 .
    9. 胡玉婷,侯冠军. 安徽省翘嘴鲌野生群体的遗传多样性分析. 生物学杂志. 2022(04): 79-83 .
    10. 罗宇婷,方弟安,周彦锋,徐东坡,彭云鑫,彭飞,张桂宁,刘凯,尤洋. 基于微卫星标记对长江下游鲢遗传多样性现状的分析. 南方水产科学. 2021(06): 48-57 . 本站查看
    11. 张显波,傅建军,胡锦丽,朱文彬,闵倩雯,赵飞,吴俣学,董在杰. 基于D-loop序列和SSR的从江田鱼与6个鲤群体的遗传分析. 贵州农业科学. 2021(12): 76-85 .

    Other cited types(5)

Catalog

    Article views (1041) PDF downloads (50) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return