Citation: | ZHANG Jiaqi, XIE Yonghe, LI Detang, GAO Weipeng, CHEN Qing, WANG Jun, WANG Yunjie, HONG Yongqiang. Structural design and research of underwater robot for aquaculture ship operation[J]. South China Fisheries Science, 2024, 20(1): 11-24. DOI: 10.12131/20230192 |
Water quality detection is important for intensive deep-sea aquaculture, and water quality affects fish growth directly. At present, the main ways of water quality detection is to build a water quality monitoring network system and manpower collection of water samples for detection, which are complicated and inefficient, with limited operation area, long monitoring cycle and other problems. Thus, this paper designed an operational underwater robot for water quality detection on aquaculture ships. Firstly, the overall design of water quality detection system and underwater robot system was proposed. Then the mechanical structure of underwater robot was designed by modelling software Solidworks. The housing adopted a streamlined structural design, and was equipped with pumping hose port. The design of two horizontal and four vertical propellers is to ensure that the underwater robot can move freely. Based on the Ansys software, stress numerical simulation was conducted on the housing, fixed structure as well as pressure chamber of the robot, and theoretical calculations were combined to improve the robot design. The results show that the underwater robot's sealing, degree of freedom, pumping detection and other performance tests meet the working requirements, and can reach the designated location for stratified and fixed-point water quality sampling; the obtained water quality detection data can provide data references for aquaculture.
[1] |
MELIKOGLU M. Current status and future of ocean energy sources: a global review[J]. Ocean Engin, 2018, 148: 563-573. doi: 10.1016/j.oceaneng.2017.11.045
|
[2] |
李军, 袁伶俐. 全球海洋资源开发现状和趋势综述[J]. 国土资源情报, 2013(12): 13-16, 32.
|
[3] |
许晓冬, 邹绍敏. 海洋强国战略背景下海洋产业科技创新能力的提升[J]. 晋中学院学报, 2021, 38(2): 43-47.
|
[4] |
国家十部委《关于加快推进水产养殖业绿色发展的若干意见》[J]. 渔业致富指南, 2019(7): 3-7.
|
[5] |
李加林, 沈满洪, 马仁锋, 等. 海洋生态文明建设背景下的海洋资源经济与海洋战略[J]. 自然资源学报, 2022, 37(4): 829-849.
|
[6] |
ABDEL-TAWWAB M, MONIER M N, HOSEINIFAR S H, et al. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers[J]. Fish Physiol Biochem, 2019, 45(3): 997-1013. doi: 10.1007/s10695-019-00614-9
|
[7] |
ISLAM M J, KUNZMANN A, SLATER M J. Responses of aquaculture fish to climate change-induced extreme temperatures: a review[J]. J World Aquac Soc, 2022, 53(2): 314-366. doi: 10.1111/jwas.12853
|
[8] |
SOMRIDHIVEJ B, BOYD C E. Likely Effects of the increasing alkalinity of inland waters on aquaculture[J]. J World Aquac Soc, 2017, 48(3): 496-502. doi: 10.1111/jwas.12405
|
[9] |
夏英凯, 朱明, 曾鑫, 等. 水产养殖水下机器人研究进展[J]. 华中农业大学学报, 2021, 40(3): 85-97.
|
[10] |
李道亮, 包建华. 水产养殖水下作业机器人关键技术研究进展[J]. 农业工程学报, 2018, 34(16): 1-9.
|
[11] |
TEAGUE J, ALLEN M J, SCOTT T B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring[J]. Ocean Engin, 2018, 147: 333-339. doi: 10.1016/j.oceaneng.2017.10.046
|
[12] |
CHOI J K, YOKOBIKI T, KAWAGUCHI K. ROV-based automated cable-laying system: application to DONET2 installation[J]. IEEE J Oceanic Engin, 2018, 43(3): 665-676. doi: 10.1109/JOE.2017.2735598
|
[13] |
KHOJASTEH D, KAMALI R. Design and dynamic study of a ROV with application to oil and gas industries of Persian Gulf[J]. Ocean Engin, 2017, 136: 18-30. doi: 10.1016/j.oceaneng.2017.03.014
|
[14] |
许裕良, 杜江辉, 雷泽宇, 等. 水下机器人在渔业中的应用现状与关键技术综述[J]. 机器人, 2023, 45(1): 110-128.
|
[15] |
丛明, 刘毅, 李泳耀, 等. 水下捕捞机器人的研究现状与发展[J]. 船舶工程, 2016, 38(6): 55-60.
|
[16] |
曹少华, 张春晓, 王广洲, 等. 智能水下机器人的发展现状及在军事上的应用[J]. 船舶工程, 2019, 41(2): 79-84, 89.
|
[17] |
王懿偲, 夏英凯, 朱明, 等. 水产养殖机器鱼设计与三维路径跟踪控制[J]. 华中农业大学学报, 2022, 41(4): 259-270.
|
[18] |
刘宁, 徐宇卉, 孟宪宇. 水质检测蛇形机器人设计及稳定性分析[J]. 制造业自动化, 2023, 45(6): 1-6, 22.
|
[19] |
李翔飞, 戴逸飞. 六足水下机器人及其在水产养殖行业的设计与应用[J]. 科学技术创新, 2023(20): 58-61.
|
[20] |
RAVALLI A, ROSSI C, MARRAZZA G. Bio-inspired fish robot based on chemical sensors[J]. Sensors Actuat B-Chem, 2017, 239: 325-329. doi: 10.1016/j.snb.2016.08.030
|
[21] |
JO W, HOASHI Y, AGUILAR L L P, et al. A low-cost and small USV platform for water quality monitoring[J]. HardwareX, 2019, 6: e00076.
|
[22] |
HUANG L W, LI Z W, LI S R, et al. Design and application of a free and lightweight aquaculture water quality detection robot[J]. J Européen des Systèmes Automatisés, 2020, 53(1): 111-122.
|
[23] |
张平伟, 贺露尧, 蒙绒娟, 等. 基于互联网+水产养殖水质的远程控制系统[J]. 通信与信息技术, 2019(3): 60-61, 59.
|
[24] |
徐效伟, 滕兆丽, 何春健, 等. 水产养殖水质监控设备检测装备应用现状与发展趋势[J]. 江苏农机化, 2023(4): 20-22.
|
[25] |
MANOJ M, KUMAR V D, ARIF M, et al. State of the art techniques for water quality monitoring systems for fish ponds using iot and underwater sensors: a review[J]. Sensors, 2022, 22(6): 2088. doi: 10.3390/s22062088
|
[26] |
张胜, 徐艳松, 孙姗姗, 等. 3D打印材料的研究及发展现状[J]. 中国塑料, 2016, 30(1): 7-14.
|
[27] |
王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4): 89-98.
|
[28] |
CHIN C S, LAU M W S. Benchmark models of control system design for remotely operated vehicles[M]. Singapore: Springer Singapore, 2020: 75-93.
|
[29] |
刘涛. 大深度潜水器耐压壳体弹塑性稳定性简易计算方法[J]. 中国造船, 2001(3): 10-16.
|
[30] |
陈永华, 李思忍, 龚德俊, 等. 一种小型水密耐压舱体的设计与制作[J]. 压力容器, 2007(9): 25-28, 61. doi: 10.3969/j.issn.1001-4837.2007.09.006
|
[31] |
彭勃, 田军委, 孙江龙, 等. 观察级ROV结构设计及研究[J]. 制造业自动化, 2018, 40(12): 118-120, 124.
|
[1] | LUO Jing, LI Min, ZHANG Ying, LIU Yan, GUAN Zhiqiang. Effect of different drying methods on volatile components of tilapia fillets analyzed by electronic nose combined with GC-MS[J]. South China Fisheries Science, 2022, 18(1): 135-143. DOI: 10.12131/20210098 |
[2] | LI Laihao, SUN Bolun, ZHAO Donghao. Research progress in detection and preparation methods for tetrodotoxin[J]. South China Fisheries Science, 2018, 14(3): 126-132. DOI: 10.3969/j.issn.2095-0780.2018.03.016 |
[3] | CHEN Kang, DAI Zhiyuan, SHEN Qing, HUANG Yaowen. Extraction of phospholipid from Euphausia superba by response surface method and determination of phospholipid molecular species[J]. South China Fisheries Science, 2017, 13(3): 104-112. DOI: 10.3969/j.issn.2095-0780.2017.03.014 |
[4] | WANG Zhengbin, LIU Yongtao, AI Xiaohui, YANG Tao, LIU Tianqiang. Microbiological inhibition method for determination of colistin residues in muscles of aquatic products[J]. South China Fisheries Science, 2016, 12(3): 98-105. DOI: 10.3969/j.issn.2095-0780.2016.03.013 |
[5] | WEI Ya, ZHAO Yongqiang, HAO Shuxian, CEN Jianwei, HUANG Hui, LI Laihao. Comparison of carbazole method and phloroglucinol method for chondroitin sulfate determination[J]. South China Fisheries Science, 2012, 8(6): 65-71. DOI: 10.3969/j.issn.2095-0780.2012.06.010 |
[6] | ZHU Shichao, QIAN Zhuozhen, WU Chengye. Determination of 7 macrolide antibiotic residues in aquatic products by HPLC-MS/MS[J]. South China Fisheries Science, 2012, 8(1): 54-60. DOI: 10.3969/j.issn.2095-0780.2012.01.009 |
[7] | HUANG Chunli, HUANG He, LIU Wenxia, GAO Ping, HUANG Guofang, LI Zhiqing, CHENG Hong, LUO Lin. Research progress on residual toxicity and detection methods of melamine[J]. South China Fisheries Science, 2011, 7(3): 76-80. DOI: 10.3969/j.issn.2095-0780.2011.03.014 |
[8] | CEN Jianwei, LI Laihao, YANG Xianqing, WEI Ya, ZHAO Suhui, ZHOU Wanjun, SHI Hong. Comparison of four determination methods of Alum content in jellyfish product[J]. South China Fisheries Science, 2010, 6(3): 7-11. DOI: 10.3969/j.issn.1673-2227.2010.03.002 |
[9] | YANG Qibin, LI Xiaolan, SUN Miaomiao, WEN Weigeng, HUANG Jianhua. Methods of testing vitality of postlarvae of Penaeus monodon[J]. South China Fisheries Science, 2010, 6(1): 12-18. DOI: 10.3969/j.issn.1673-2227.2010.01.003 |
[10] | MA Haixia, LI Laihao, YANG Xianqing, WU Yanyan, ZHOU Wanjun, DIAO Shiqiang, CHEN Shengjun. Spectrophotometric determination of formaldehyde in aquatic products[J]. South China Fisheries Science, 2008, 4(6): 26-32. |