ZHANG Jiaqi, XIE Yonghe, LI Detang, GAO Weipeng, CHEN Qing, WANG Jun, WANG Yunjie, HONG Yongqiang. Structural design and research of underwater robot for aquaculture ship operation[J]. South China Fisheries Science, 2024, 20(1): 11-24. DOI: 10.12131/20230192
Citation: ZHANG Jiaqi, XIE Yonghe, LI Detang, GAO Weipeng, CHEN Qing, WANG Jun, WANG Yunjie, HONG Yongqiang. Structural design and research of underwater robot for aquaculture ship operation[J]. South China Fisheries Science, 2024, 20(1): 11-24. DOI: 10.12131/20230192

Structural design and research of underwater robot for aquaculture ship operation

More Information
  • Received Date: October 07, 2023
  • Revised Date: November 29, 2023
  • Accepted Date: December 02, 2023
  • Available Online: January 01, 2024
  • Water quality detection is important for intensive deep-sea aquaculture, and water quality affects fish growth directly. At present, the main ways of water quality detection is to build a water quality monitoring network system and manpower collection of water samples for detection, which are complicated and inefficient, with limited operation area, long monitoring cycle and other problems. Thus, this paper designed an operational underwater robot for water quality detection on aquaculture ships. Firstly, the overall design of water quality detection system and underwater robot system was proposed. Then the mechanical structure of underwater robot was designed by modelling software Solidworks. The housing adopted a streamlined structural design, and was equipped with pumping hose port. The design of two horizontal and four vertical propellers is to ensure that the underwater robot can move freely. Based on the Ansys software, stress numerical simulation was conducted on the housing, fixed structure as well as pressure chamber of the robot, and theoretical calculations were combined to improve the robot design. The results show that the underwater robot's sealing, degree of freedom, pumping detection and other performance tests meet the working requirements, and can reach the designated location for stratified and fixed-point water quality sampling; the obtained water quality detection data can provide data references for aquaculture.

  • [1]
    MELIKOGLU M. Current status and future of ocean energy sources: a global review[J]. Ocean Engin, 2018, 148: 563-573. doi: 10.1016/j.oceaneng.2017.11.045
    [2]
    李军, 袁伶俐. 全球海洋资源开发现状和趋势综述[J]. 国土资源情报, 2013(12): 13-16, 32.
    [3]
    许晓冬, 邹绍敏. 海洋强国战略背景下海洋产业科技创新能力的提升[J]. 晋中学院学报, 2021, 38(2): 43-47.
    [4]
    国家十部委《关于加快推进水产养殖业绿色发展的若干意见》[J]. 渔业致富指南, 2019(7): 3-7.
    [5]
    李加林, 沈满洪, 马仁锋, 等. 海洋生态文明建设背景下的海洋资源经济与海洋战略[J]. 自然资源学报, 2022, 37(4): 829-849.
    [6]
    ABDEL-TAWWAB M, MONIER M N, HOSEINIFAR S H, et al. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers[J]. Fish Physiol Biochem, 2019, 45(3): 997-1013. doi: 10.1007/s10695-019-00614-9
    [7]
    ISLAM M J, KUNZMANN A, SLATER M J. Responses of aquaculture fish to climate change-induced extreme temperatures: a review[J]. J World Aquac Soc, 2022, 53(2): 314-366. doi: 10.1111/jwas.12853
    [8]
    SOMRIDHIVEJ B, BOYD C E. Likely Effects of the increasing alkalinity of inland waters on aquaculture[J]. J World Aquac Soc, 2017, 48(3): 496-502. doi: 10.1111/jwas.12405
    [9]
    夏英凯, 朱明, 曾鑫, 等. 水产养殖水下机器人研究进展[J]. 华中农业大学学报, 2021, 40(3): 85-97.
    [10]
    李道亮, 包建华. 水产养殖水下作业机器人关键技术研究进展[J]. 农业工程学报, 2018, 34(16): 1-9.
    [11]
    TEAGUE J, ALLEN M J, SCOTT T B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring[J]. Ocean Engin, 2018, 147: 333-339. doi: 10.1016/j.oceaneng.2017.10.046
    [12]
    CHOI J K, YOKOBIKI T, KAWAGUCHI K. ROV-based automated cable-laying system: application to DONET2 installation[J]. IEEE J Oceanic Engin, 2018, 43(3): 665-676. doi: 10.1109/JOE.2017.2735598
    [13]
    KHOJASTEH D, KAMALI R. Design and dynamic study of a ROV with application to oil and gas industries of Persian Gulf[J]. Ocean Engin, 2017, 136: 18-30. doi: 10.1016/j.oceaneng.2017.03.014
    [14]
    许裕良, 杜江辉, 雷泽宇, 等. 水下机器人在渔业中的应用现状与关键技术综述[J]. 机器人, 2023, 45(1): 110-128.
    [15]
    丛明, 刘毅, 李泳耀, 等. 水下捕捞机器人的研究现状与发展[J]. 船舶工程, 2016, 38(6): 55-60.
    [16]
    曹少华, 张春晓, 王广洲, 等. 智能水下机器人的发展现状及在军事上的应用[J]. 船舶工程, 2019, 41(2): 79-84, 89.
    [17]
    王懿偲, 夏英凯, 朱明, 等. 水产养殖机器鱼设计与三维路径跟踪控制[J]. 华中农业大学学报, 2022, 41(4): 259-270.
    [18]
    刘宁, 徐宇卉, 孟宪宇. 水质检测蛇形机器人设计及稳定性分析[J]. 制造业自动化, 2023, 45(6): 1-6, 22.
    [19]
    李翔飞, 戴逸飞. 六足水下机器人及其在水产养殖行业的设计与应用[J]. 科学技术创新, 2023(20): 58-61.
    [20]
    RAVALLI A, ROSSI C, MARRAZZA G. Bio-inspired fish robot based on chemical sensors[J]. Sensors Actuat B-Chem, 2017, 239: 325-329. doi: 10.1016/j.snb.2016.08.030
    [21]
    JO W, HOASHI Y, AGUILAR L L P, et al. A low-cost and small USV platform for water quality monitoring[J]. HardwareX, 2019, 6: e00076.
    [22]
    HUANG L W, LI Z W, LI S R, et al. Design and application of a free and lightweight aquaculture water quality detection robot[J]. J Européen des Systèmes Automatisés, 2020, 53(1): 111-122.
    [23]
    张平伟, 贺露尧, 蒙绒娟, 等. 基于互联网+水产养殖水质的远程控制系统[J]. 通信与信息技术, 2019(3): 60-61, 59.
    [24]
    徐效伟, 滕兆丽, 何春健, 等. 水产养殖水质监控设备检测装备应用现状与发展趋势[J]. 江苏农机化, 2023(4): 20-22.
    [25]
    MANOJ M, KUMAR V D, ARIF M, et al. State of the art techniques for water quality monitoring systems for fish ponds using iot and underwater sensors: a review[J]. Sensors, 2022, 22(6): 2088. doi: 10.3390/s22062088
    [26]
    张胜, 徐艳松, 孙姗姗, 等. 3D打印材料的研究及发展现状[J]. 中国塑料, 2016, 30(1): 7-14.
    [27]
    王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4): 89-98.
    [28]
    CHIN C S, LAU M W S. Benchmark models of control system design for remotely operated vehicles[M]. Singapore: Springer Singapore, 2020: 75-93.
    [29]
    刘涛. 大深度潜水器耐压壳体弹塑性稳定性简易计算方法[J]. 中国造船, 2001(3): 10-16.
    [30]
    陈永华, 李思忍, 龚德俊, 等. 一种小型水密耐压舱体的设计与制作[J]. 压力容器, 2007(9): 25-28, 61. doi: 10.3969/j.issn.1001-4837.2007.09.006
    [31]
    彭勃, 田军委, 孙江龙, 等. 观察级ROV结构设计及研究[J]. 制造业自动化, 2018, 40(12): 118-120, 124.
  • Related Articles

    [1]SHI Juan, LIU Yong, LI Chunhou, WANG Teng, ZHAO Jinfa, SONG Xiaoyu, XIE Hongyu. Trophic niche analysis of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(3): 56-65. DOI: 10.12131/20240025
    [2]SUN Ye, LIU Yong, LI Chunhou, WU Peng, LI Yafang, SHU Liming, LIN Lin, XIAO Yayuan, TANG Guanglong. Community characteristics and influencing factors of macrobenthos in Pearl River Estuary[J]. South China Fisheries Science, 2023, 19(5): 39-47. DOI: 10.12131/20230048
    [3]YAN Lei, TAN Yongguang, YANG Lin, YANG Bingzhong, ZHANG Peng, CHEN Sen, LI Jie. Catch composition and diversity of gillnet fishery in the Pearl River Estuary coastal waters of the South China Sea in autumn[J]. South China Fisheries Science, 2016, 12(1): 111-119. DOI: 10.3969/j.issn.2095-0780.2016.01.015
    [4]SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012
    [5]YANG Lin, ZHANG Xufeng, TAN Yongguang, ZHANG Peng. Analysis of the catch composition of small shrimp-beam-trawl net in shallow waters of Pearl River Estuary, China[J]. South China Fisheries Science, 2008, 4(6): 70-77.
    [6]GAO Yuan, LAI Zini, WANG Chao, PANG Shixun, WEI Taili, XIE Wenping, YANG Wanling. Community characteristics of zooplankton in Pearl River Estuary in summer of 2006[J]. South China Fisheries Science, 2008, 4(1): 10-15.
    [7]WANG Di, LIN Zhaojin. Spatial and temporal variations of fish community structure in the Pearl River Estuary waters[J]. South China Fisheries Science, 2006, 2(4): 37-45.
    [8]LI Zhan-dong, LIN Qin. The application of BP artificial neural networks on assessment of seawater quality at Pearl River Estuary[J]. South China Fisheries Science, 2005, 1(4): 47-54.
    [9]YANG Mei-lan, LIN Qin, LU Xiao-yu, CAI Wen-gui. Distribution characteristics of suspended substance in the Lingdingyang water of the Pearl River Estuary[J]. South China Fisheries Science, 2005, 1(2): 51-55.
    [10]YANG Lin, ZHANG Xufeng, ZHANG Peng, TAN Yongguang. Composition of by-catch of shrimping beam trawl in the Pearl River Estuary, China[J]. South China Fisheries Science, 2005, 1(1): 27-34.
  • Cited by

    Periodical cited type(6)

    1. 徐菲,徐开达,张洪亮,卢占晖,周永东,李羽如,叶莹莹,马文静,金梓慧. 浙江岱衢洋海域春秋季游泳动物群落结构及生物量粒径谱特征. 海洋与湖沼. 2025(01): 165-174 .
    2. Zhisen LUO,Murong YI,Xiaodong YANG,Xiao CHEN,Jinxi WANG,Changping JIANG,Fengming LIU,Konglan LUO,Xiongbo HE,Hung-Du LIN,Bin KANG,Yunrong YAN. Checklist of marine fishes in the Beibu Gulf: fish classification, resource protection, and biodiversity challenge. Journal of Oceanology and Limnology. 2025(01): 232-247 .
    3. 李诗佳,施利燕,钟俊生,赵路路. 长江口南部水域春、秋季鱼类群落结构比较. 上海海洋大学学报. 2024(01): 135-149 .
    4. 李淼,许友伟,孙铭帅,范江涛,李佳俊,张魁,陈作志. 拉尼娜事件前后北部湾鱼类群落结构变化研究. 南方水产科学. 2023(02): 1-11 . 本站查看
    5. Chenyu Song,Zhong Tu,Na Song. Discordant patterns of genetic variation between mitochondrial and microsatellite markers in Acanthogobius ommaturus across the coastal areas of China. Acta Oceanologica Sinica. 2023(04): 72-80 .
    6. 王鑫,李昌文,徐加涛,李士虎,宋可心,唐佳伟,马晓娜,冯志华. 灌河口海域水生动物群落结构及分布特征. 江苏海洋大学学报(自然科学版). 2023(04): 29-41 .

    Other cited types(7)

Catalog

    Article views (108) PDF downloads (39) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return