Citation: | ZHANG Jiaqi, XIE Yonghe, LI Detang, GAO Weipeng, CHEN Qing, WANG Jun, WANG Yunjie, HONG Yongqiang. Structural design and research of underwater robot for aquaculture ship operation[J]. South China Fisheries Science, 2024, 20(1): 11-24. DOI: 10.12131/20230192 |
Water quality detection is important for intensive deep-sea aquaculture, and water quality affects fish growth directly. At present, the main ways of water quality detection is to build a water quality monitoring network system and manpower collection of water samples for detection, which are complicated and inefficient, with limited operation area, long monitoring cycle and other problems. Thus, this paper designed an operational underwater robot for water quality detection on aquaculture ships. Firstly, the overall design of water quality detection system and underwater robot system was proposed. Then the mechanical structure of underwater robot was designed by modelling software Solidworks. The housing adopted a streamlined structural design, and was equipped with pumping hose port. The design of two horizontal and four vertical propellers is to ensure that the underwater robot can move freely. Based on the Ansys software, stress numerical simulation was conducted on the housing, fixed structure as well as pressure chamber of the robot, and theoretical calculations were combined to improve the robot design. The results show that the underwater robot's sealing, degree of freedom, pumping detection and other performance tests meet the working requirements, and can reach the designated location for stratified and fixed-point water quality sampling; the obtained water quality detection data can provide data references for aquaculture.
[1] |
MELIKOGLU M. Current status and future of ocean energy sources: a global review[J]. Ocean Engin, 2018, 148: 563-573. doi: 10.1016/j.oceaneng.2017.11.045
|
[2] |
李军, 袁伶俐. 全球海洋资源开发现状和趋势综述[J]. 国土资源情报, 2013(12): 13-16, 32.
|
[3] |
许晓冬, 邹绍敏. 海洋强国战略背景下海洋产业科技创新能力的提升[J]. 晋中学院学报, 2021, 38(2): 43-47.
|
[4] |
国家十部委《关于加快推进水产养殖业绿色发展的若干意见》[J]. 渔业致富指南, 2019(7): 3-7.
|
[5] |
李加林, 沈满洪, 马仁锋, 等. 海洋生态文明建设背景下的海洋资源经济与海洋战略[J]. 自然资源学报, 2022, 37(4): 829-849.
|
[6] |
ABDEL-TAWWAB M, MONIER M N, HOSEINIFAR S H, et al. Fish response to hypoxia stress: growth, physiological, and immunological biomarkers[J]. Fish Physiol Biochem, 2019, 45(3): 997-1013. doi: 10.1007/s10695-019-00614-9
|
[7] |
ISLAM M J, KUNZMANN A, SLATER M J. Responses of aquaculture fish to climate change-induced extreme temperatures: a review[J]. J World Aquac Soc, 2022, 53(2): 314-366. doi: 10.1111/jwas.12853
|
[8] |
SOMRIDHIVEJ B, BOYD C E. Likely Effects of the increasing alkalinity of inland waters on aquaculture[J]. J World Aquac Soc, 2017, 48(3): 496-502. doi: 10.1111/jwas.12405
|
[9] |
夏英凯, 朱明, 曾鑫, 等. 水产养殖水下机器人研究进展[J]. 华中农业大学学报, 2021, 40(3): 85-97.
|
[10] |
李道亮, 包建华. 水产养殖水下作业机器人关键技术研究进展[J]. 农业工程学报, 2018, 34(16): 1-9.
|
[11] |
TEAGUE J, ALLEN M J, SCOTT T B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring[J]. Ocean Engin, 2018, 147: 333-339. doi: 10.1016/j.oceaneng.2017.10.046
|
[12] |
CHOI J K, YOKOBIKI T, KAWAGUCHI K. ROV-based automated cable-laying system: application to DONET2 installation[J]. IEEE J Oceanic Engin, 2018, 43(3): 665-676. doi: 10.1109/JOE.2017.2735598
|
[13] |
KHOJASTEH D, KAMALI R. Design and dynamic study of a ROV with application to oil and gas industries of Persian Gulf[J]. Ocean Engin, 2017, 136: 18-30. doi: 10.1016/j.oceaneng.2017.03.014
|
[14] |
许裕良, 杜江辉, 雷泽宇, 等. 水下机器人在渔业中的应用现状与关键技术综述[J]. 机器人, 2023, 45(1): 110-128.
|
[15] |
丛明, 刘毅, 李泳耀, 等. 水下捕捞机器人的研究现状与发展[J]. 船舶工程, 2016, 38(6): 55-60.
|
[16] |
曹少华, 张春晓, 王广洲, 等. 智能水下机器人的发展现状及在军事上的应用[J]. 船舶工程, 2019, 41(2): 79-84, 89.
|
[17] |
王懿偲, 夏英凯, 朱明, 等. 水产养殖机器鱼设计与三维路径跟踪控制[J]. 华中农业大学学报, 2022, 41(4): 259-270.
|
[18] |
刘宁, 徐宇卉, 孟宪宇. 水质检测蛇形机器人设计及稳定性分析[J]. 制造业自动化, 2023, 45(6): 1-6, 22.
|
[19] |
李翔飞, 戴逸飞. 六足水下机器人及其在水产养殖行业的设计与应用[J]. 科学技术创新, 2023(20): 58-61.
|
[20] |
RAVALLI A, ROSSI C, MARRAZZA G. Bio-inspired fish robot based on chemical sensors[J]. Sensors Actuat B-Chem, 2017, 239: 325-329. doi: 10.1016/j.snb.2016.08.030
|
[21] |
JO W, HOASHI Y, AGUILAR L L P, et al. A low-cost and small USV platform for water quality monitoring[J]. HardwareX, 2019, 6: e00076.
|
[22] |
HUANG L W, LI Z W, LI S R, et al. Design and application of a free and lightweight aquaculture water quality detection robot[J]. J Européen des Systèmes Automatisés, 2020, 53(1): 111-122.
|
[23] |
张平伟, 贺露尧, 蒙绒娟, 等. 基于互联网+水产养殖水质的远程控制系统[J]. 通信与信息技术, 2019(3): 60-61, 59.
|
[24] |
徐效伟, 滕兆丽, 何春健, 等. 水产养殖水质监控设备检测装备应用现状与发展趋势[J]. 江苏农机化, 2023(4): 20-22.
|
[25] |
MANOJ M, KUMAR V D, ARIF M, et al. State of the art techniques for water quality monitoring systems for fish ponds using iot and underwater sensors: a review[J]. Sensors, 2022, 22(6): 2088. doi: 10.3390/s22062088
|
[26] |
张胜, 徐艳松, 孙姗姗, 等. 3D打印材料的研究及发展现状[J]. 中国塑料, 2016, 30(1): 7-14.
|
[27] |
王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4): 89-98.
|
[28] |
CHIN C S, LAU M W S. Benchmark models of control system design for remotely operated vehicles[M]. Singapore: Springer Singapore, 2020: 75-93.
|
[29] |
刘涛. 大深度潜水器耐压壳体弹塑性稳定性简易计算方法[J]. 中国造船, 2001(3): 10-16.
|
[30] |
陈永华, 李思忍, 龚德俊, 等. 一种小型水密耐压舱体的设计与制作[J]. 压力容器, 2007(9): 25-28, 61. doi: 10.3969/j.issn.1001-4837.2007.09.006
|
[31] |
彭勃, 田军委, 孙江龙, 等. 观察级ROV结构设计及研究[J]. 制造业自动化, 2018, 40(12): 118-120, 124.
|
1. |
王大伟,邢盈,蒋成宇,胡淼,赵金良. 放养密度对鳜幼鱼HPI轴激素、应激酶活力及呼吸频率的影响. 淡水渔业. 2025(02): 26-32 .
![]() | |
2. |
何静怡,魏涯,岑剑伟,郝淑贤,陈胜军,黄卉,赵永强,王悦齐,杨少玲,林织. 基于梯度降温的草鱼暂养及有水保活运输技术. 食品科学. 2024(04): 271-278 .
![]() | |
3. |
何静怡,郑伟,黄卉,岑剑伟,赵永强,王田,魏涯,郝淑贤,杨少玲,陈琛. 不同温度、盐度条件对草鱼暂养及应激保活的影响. 大连海洋大学学报. 2024(04): 597-605 .
![]() | |
4. |
梁雪莹,郑晓婷,陈秋羽,谢静怡,董宏标,李勇,杨金龙,陈成勋,张家松. 模拟运输胁迫对牛蛙幼蛙生理机能的影响. 广东海洋大学学报. 2024(06): 118-126 .
![]() | |
5. |
刘浩,李洁,李亚军,康鹏天,张国维,邵东宏,王建福. 水体中泥沙含量对虹鳟生存、生理和体表微生物的影响. 中国水产科学. 2024(11): 1365-1374 .
![]() | |
6. |
唐忠林,张佳佳,周国勤,陈树桥,徐钢春,徐跑,强俊,王佩佩. 丁香酚对“优鲈3号”幼鱼运输水质及其血液、肌肉生理指标的影响. 水产科技情报. 2023(01): 44-52 .
![]() | |
7. |
王文雯,杨静茹,付正祎,于刚,马振华. 运输时间对高体鰤幼鱼应激、代谢、抗氧化和免疫的影响. 中国渔业质量与标准. 2023(02): 25-36 .
![]() | |
8. |
李哲,周珊珊,王好学,王嘉浩,陈璐,徐开达. 运输振荡对条石鲷幼鱼生理应激和水体总氨氮含量的影响. 水产科技情报. 2023(05): 327-332 .
![]() | |
9. |
范宏博,胡丁月,徐莉,孙浩,刘峰,刘春娥,张小栓. 运输密度和时间对单环刺螠保活运输品质的影响. 农业工程. 2023(10): 72-77 .
![]() | |
10. |
虞为,陈雪晴,杨育凯,张燕娃,黄小林,黄忠,李涛,马振华,吴洽儿,于刚,周传朋,林黑着. 饲料中添加雨生红球藻对尖吻鲈生长性能、抗氧化能力及免疫状态的影响. 南方水产科学. 2022(05): 46-54 .
![]() | |
11. |
陈旭,赵旺,陈明强,谭春明,于刚. 盐度胁迫对红娇凤凰螺耗氧率、排氨率以及免疫相关酶活性的影响. 南方水产科学. 2022(05): 160-165 .
![]() |