HU Yu, HUANG Xiaohua, TAO Qiyou, YUAN Taiping, WANG Shaomin, LIU Haiyang. Simulation of automatic pneumatic conveying process of automatic feeding system based on computational fluid dynamics-discrete element method[J]. South China Fisheries Science, 2019, 15(3): 113-119. DOI: 10.12131/20180219
Citation: HU Yu, HUANG Xiaohua, TAO Qiyou, YUAN Taiping, WANG Shaomin, LIU Haiyang. Simulation of automatic pneumatic conveying process of automatic feeding system based on computational fluid dynamics-discrete element method[J]. South China Fisheries Science, 2019, 15(3): 113-119. DOI: 10.12131/20180219

Simulation of automatic pneumatic conveying process of automatic feeding system based on computational fluid dynamics-discrete element method

More Information
  • Received Date: September 27, 2018
  • Revised Date: February 20, 2019
  • Accepted Date: March 03, 2019
  • Available Online: March 20, 2019
  • During the pneumatic conveying process of automatic feeding systems for deep-water off-shore cage culture, blockages of pipeline and damage to feed pellets occur easily. To reveal the pneumatic transport characteristics of pellet feed in automatic feeding system, a numerical simulation of gas-solid two-phase flow of feed pellets in a pipeline was carried out. Based on gas-solid two-phase flow theory, both a computational fluid dynamics (CFD) model and discrete element model were established. The movement process of feed particles from initial stage to stable stage of pneumatic conveying pipeline was analyzed, and the position distribution of feed particles from initial stage to stable stage was obtained. Pressures at various locations in the pipeline were analyzed and compared to determine the pressure drop between the pipeline inlet and the instant at which the flow reached the steady state. The results provide references for the simulation and optimization design of automatic baiting equipment, which can better guide the movement of feed particles and reduce the collision energy loss of particles at elbow.

  • [1]
    郭根喜, 陶启友, 黄小华, 等. 深水网箱养殖装备技术前沿进展[J]. 中国农业科技导报, 2011, 13(5): 44-49. doi: 10.3969/j.issn.1008-0864.2011.05.07
    [2]
    庄保陆, 郭根喜. 水产养殖自动投饵装备研究进展及其应用[J]. 南方水产, 2008, 4(4): 67-72. doi: 10.3969/j.issn.2095-0780.2008.04.013
    [3]
    胡昱, 郭根喜, 汤涛林, 等. 基于MCGS的深水网箱自动投饵远程控制系统的设计[J]. 渔业科学进展, 2010, 31(6): 110-115. doi: 10.3969/j.issn.1000-7075.2010.06.016
    [4]
    胡昱, 郭根喜, 黄小华, 等. 基于PLC的深水网箱自动投饵系统[J]. 南方水产科学, 2011, 7(4): 61-68. doi: 10.3969/j.issn.2095-0780.2011.04.0010
    [5]
    宋协法, 路士森. 深水网箱投饵机设计与试验研究[J]. 中国海洋大学学报(自然科学版), 2006, 36(3): 405-409.
    [6]
    TURMELLE C A, SWIFT M R, CELIKKOL B, et al. Design of a 20-ton capacity finfish aquaculture feeding buoy[C]. 2006 Oceans MTS, Boston, 2006: 1-6.
    [7]
    TSUNODA T, KITAZAWA D, KINOSHITA T, et al. Concept of an offshore aquaculture system with an automated feeding platform[C]. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Estoril, 2008: 527-534.
    [8]
    De MORAES M S, MUIÑOS TORNEIROS D L, da SILVA ROSA L, et al. Experimental quantification of the head loss coefficient K for fittings and semi-industrial pipe cross section solid concentration profile in pneumatic conveying of polypropylene pellets in dilute phase[J]. Powder Technol, 2017, 310(4): 250-263.
    [9]
    VASQUEZ N, FAN Y, JACOB K. Effect of material elasticity and friction on particle dynamics during dilute pneumatic conveying[J]. Powder Technol, 2016, 303(12): 90-99.
    [10]
    BHATTARAI S, OH J H, EUH S H, et al. Simulation study for pneumatic conveying drying of sawdust for pellet production[J]. Drying Technol, 2014, 32(6): 1142-1156.
    [11]
    祝先胜. 气力输送管内气固两相流动的数值模拟[D]. 上海: 华东理工大学, 2015: 6-8.
    [12]
    王明旭, 秦超, 李永祥, 等. 气力输送过程中粮食颗粒的输送特性研究[J]. 农机化研究, 2014(9): 18-22. doi: 10.3969/j.issn.1003-188X.2014.09.004
    [13]
    卢洲, 刘雪东, 潘兵. 基于CFD-DEM方法的柱状颗粒在弯管中输送过程的数值模拟[J]. 中国粉体技术, 2011, 17(5): 65-69. doi: 10.3969/j.issn.1008-5548.2011.05.017
    [14]
    OEHME M, AAS T S, SØRENSEN M, et al. Feed pellet distribution in a sea cage using pneumatic feeding system with rotor spreader[J]. Aquacult Engin, 2012, 51(11): 44-52.
    [15]
    HALSTENSEN M, IHUNEGBO F N, RATNAYAKE C. Online acoustic chemometric monitoring of fish feed pellet velocity in a pneumatic conveying system[J]. Powder Technol, 2014, 263(9): 104-111.
    [16]
    TURIDSYNNØVE A, MAIKE O, METTE S. Analysis of pellet degradation of extruded high energy fish feeds with different physical qualities in a pneumatic feeding system[J]. Aquacult Engin, 2011, 44(1): 25-34. doi: 10.1016/j.aquaeng.2010.11.002
    [17]
    杜俊, 胡国明, 方自强, 等. 稀相气力输送CFD-DEM仿真中两种模型的比较[J]. 海军工程大学学报, 2015, 27(2): 57-60.
    [18]
    丁岩峰, 孙奉昌, 张春霞. 射流喷射器用于干渣气力输送的实验研究[J]. 中国粉体技术, 2014, 20(1): 75-78. doi: 10.3969/j.issn.1008-5548.2014.01.018
    [19]
    刘晓斌, 段广彬, 刘宗明, 等. 水平弯管内气固两相流的试验研究与数值模拟[J]. 济南大学学报(自然科学版), 2012, 26(3): 230-235.
    [20]
    李志华, 刘凯, 李州, 等. 炭黑在水平管道中气力输送的数值模拟与分析[J]. 起重运输机械, 2012(1): 46-50. doi: 10.3969/j.issn.1001-0785.2012.01.014
    [21]
    杨洪雷, 靳世平, 刘小康. 煤粉气力输送过程中采用不同输送管径的数值模拟研究[J]. 工业加热, 2015, 44(4): 62-64. doi: 10.3969/j.issn.1002-1639.2015.04.020
    [22]
    李丹阳, 刘姝, 王晓宁. 颗粒粒径对气力输送影响的数值模拟与分析[J]. 中国粉体技术, 2015, 21(6): 8-11.
  • Related Articles

    [1]LI Wenjing, LI Chunsheng, WANG Yueqi, CHEN Shengjun, ZHAO Yongqiang, WU Yanyan, LI Laihao. Improvement effect of Halanaerobium fermentans YL9-2 on quality and flavor of fish sauce during fermentation[J]. South China Fisheries Science, 2022, 18(2): 115-123. DOI: 10.12131/20210314
    [2]XU Hao, LIANG Xuhong, WANG Congcong, LI Gang. Population genetic structures of Dosidicus gigas in Southeast Pacific Ocean based on mitochondrial NADH dehydrogenase subunit 2 gene[J]. South China Fisheries Science, 2022, 18(1): 153-159. DOI: 10.12131/20210119
    [3]ZHOU Kaimin, JIANG Shigui, HUANG Jianhua, YANG Qibin, JIANG Song, QIU Lihua, YANG Lishi, ZHOU Falin. Cloning and expression analysis of Chitinase-2 from Penaeus monodon during molting cycle and different larval developmental stages[J]. South China Fisheries Science, 2017, 13(4): 59-68. DOI: 10.3969/j.issn.2095-0780.2017.04.008
    [4]QIAN Weiguo, YE Chao, WANG Weijie, LU Kexiang. Underwater irradiance and optimal allocation of 2 kW straight type fish aggregation lamps[J]. South China Fisheries Science, 2015, 11(2): 90-95. DOI: 10.3969/j.issn.2095-0780.2015.02.013
    [5]YU Guohui, CHEN Yanhong, CHENG Ping, LI Yongjian, YANG Zihong, CHEN Yuanfeng. Influence of several metal ions on growth and nitrite removal of Rhodopseudomonas palustris strain 2-8[J]. South China Fisheries Science, 2011, 7(4): 30-35. DOI: 10.3969/j.issn.2095-0780.2011.04.005
    [6]HUANG Haili, DU Xiaodong, ZHOU Yinhuan. Effects of feeding larvae and juveniles of Haliotis diversicolor with 2 benthic diatoms[J]. South China Fisheries Science, 2011, 7(1): 32-38. DOI: 10.3969/j.issn.2095-0780.2011.01.005
    [7]CHEN Lei, CHENG Yuanzhi, WANG Rixin, XU Tianjun. Cloning and sequence analysis of Cyt b gene in 2 Gobiidae fishes[J]. South China Fisheries Science, 2010, 6(5): 43-49. DOI: 10.3969/j.issn.1673-2227.2010.05.007
    [8]ZHOU Chen. Karyotype analysis of chromosome of 2 Gobioid species[J]. South China Fisheries Science, 2010, 6(4): 72-76. DOI: 10.3969/j.issn.1673-2227.2010.04.012
    [9]YU Da-hui, CHU ka-hou. Study on ITS 2 molecular markers of six pearl oyster species in the genus Pinctada[J]. South China Fisheries Science, 2005, 1(4): 6-12.
    [10]YU Da-hui, LI You-ning, Wu Kai-chang. Analysis on sequence variation of ITS 2 rDNA in Pinctada fucata from China, Japan and Australia[J]. South China Fisheries Science, 2005, 1(2): 1-6.

Catalog

    Recommendations
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Study on preparation ofsargassum fusiformeoligosaccharides by enzyme and its antioxidant and antibacterial properties
    DONG Mei et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Organogenesis of digestive system inhapalogenys mucronatusduring early development
    PING Hongling et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Alternation of gastric emptying, feeding behavior and digestive enzyme activities inhexagrammos otakii
    WANG Feng et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Effect of low temperature on antioxidant and non-specific immunity ofprocambarus clarkii
    SHA Wenbin et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
    Research on the identification algorithm of crayfish body features based on the improved yolov8n loss function#br##br#
    GENG Chunxin et al., FISHERY MODERNIZATION, 2024
    Review of fish protein hydrolysates: production methods, antioxidant and antimicrobial activity and nanoencapsulation
    Nemati, Mahrokh et al., FOOD SCIENCE AND BIOTECHNOLOGY, 2024
    Glycosylation with different saccharides on the gelling, rheological and structural properties of fish gelatin
    Geng, Hulin et al., FOOD HYDROCOLLOIDS, 2024
    Effect of sterile rice spikelets derived biochar amendment on nutrient leaching and availability in paddy soil under continuous standing water
    GEOLOGY, ECOLOGY, AND LANDSCAPES, 2024
    Therapeutic efficacy of anodonta cygnea and crayfish procambarus clarkii hemolymph extracts on sepsis-induced acute liver injury in neonate rats
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
    Powered by
    Article views (5408) PDF downloads (71) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return