LIN Liqun, ZHANG Yaoming, LIU Ping, XU Zhiqiang, CUI Mingchao. Influencing factors for gas-liquid two-phase flow in oxygen speece cone of aquaculture vessel cabin[J]. South China Fisheries Science. DOI: 10.12131/20240224
Citation: LIN Liqun, ZHANG Yaoming, LIU Ping, XU Zhiqiang, CUI Mingchao. Influencing factors for gas-liquid two-phase flow in oxygen speece cone of aquaculture vessel cabin[J]. South China Fisheries Science. DOI: 10.12131/20240224

Influencing factors for gas-liquid two-phase flow in oxygen speece cone of aquaculture vessel cabin

More Information
  • Received Date: September 22, 2024
  • Revised Date: December 16, 2024
  • Accepted Date: January 17, 2025
  • Available Online: January 30, 2025
  • To understand the characteristics of gas-liquid two-phase flow in the speece cone and improve its oxygenation performance, taking the speece cone in an oxygenation system of large-scale aquaculture vessel cabin as the subject, we carried out a two-dimensional transient numerical simulation of gas-liquid two-phase flow in the speece cone under different conditions (Gas inlet method, taper and aperture size) based on the Euler-Euler model, analyzed the gas volume fraction distribution, the internal flow field pressure and the velocity distribution, explored the flow law of gas-liquid two-phase in the speece cone, and determined the key structural parameters influencing the aeration and oxygen dissolving performance of the speece cone. According to the results, under a given air inlet flow, when the gas inlet was consistent with the water inlet from speece cone, the mixing degree of gas and water was high. The experimental verification shows that the speece cone with top inlet had the best dissolved oxygen performance compared with the other two methods. When the speece cone had the same volume, changes in the taper of the speece cone led to gas-liquid two-phase changes: a smaller taper, a higher speece cone, and longer motion path and mixing time of oxygen in the speece cone, favoring full oxygen dissolution. By the same gas inlet method, the gas-liquid two-phase distribution was similar in the speece cone. The volume fraction of the speece cone outlet gas increased with decreasing air inlet aperture, and when the air inlet aperture was reduced to d =10 mm, the gas and liquid were best mixed in the speece cone.

  • [1]
    DONG S L, DONG Y W, CAO L, et al. Optimization of aquaculture sustainability through ecological intensification in China[J]. Rev Aquac, 2022, 14(3): 1249-1259. doi: 10.1111/raq.12648
    [2]
    BAYLAR A, EMIROGLU M E, BAGATUR T. An experimental investigation of aeration performance in stepped spillways[J]. Water Environ J, 2006, 20(1): 35-42. doi: 10.1111/j.1747-6593.2005.00009.x
    [3]
    ROY S M, MOULICK S, MUKHERIEE C K. Design characteristics of perforated pooled circular stepped cascade (PPCSC) aeration system[J]. Water Supply, 2020, 20(5): 1692-1705. doi: 10.2166/ws.2020.078
    [4]
    MOULICK S, MAL B C, BANDYOPADHYAY S. Prediction of aeration performance of paddle wheel aerators[J]. Aquac Eng, 2002, 25(4): 217-237. doi: 10.1016/S0144-8609(01)00087-5
    [5]
    CHENG X J, XIE Y L, ZHU T D, et al. Modeling re-oxygenation performance of fine-bubble-difusing aeration system in aquaculture ponds[J]. Aquac Int, 2019, 27(5): 1353-1368. doi: 10.1007/s10499-019-00390-6
    [6]
    徐皓, 刘晃, 黄文超. 深远海设施养殖装备技术进展与展望[J]. 上海海洋大学学报, 2023, 32(5): 893-902.
    [7]
    陈有光, 段登选, 陈秀丽, 等. 工厂化养鱼中氧气锥的增氧规律[J]. 渔业现代化, 2009, 36(3): 26-30. doi: 10.3969/j.issn.1007-9580.2009.03.006
    [8]
    ZHANG C L , SONG B B , SHAN J J , et al. Design and optimization of a new tube aeration device[J]. Aquac Int, 2020, 28(3): 985-999.
    [9]
    钟伟. 微孔曝气式增氧机增氧性能试验[J]. 农业工程, 2019, 9(12): 83-87. doi: 10.3969/j.issn.2095-1795.2019.12.021
    [10]
    张宇雷, 倪琦, 徐皓, 等. 低压纯氧混合装置增氧性能的研究[J]. 渔业现代化, 2008, 35(3): 1-5. doi: 10.3969/j.issn.1007-9580.2008.03.001
    [11]
    门涛, 张祝利, 顾海涛, 等. 射流式增氧机性能研究[J]. 渔业现代化, 2011, 38(2): 49-51, 55. doi: 10.3969/j.issn.1007-9580.2011.02.011
    [12]
    MICHAEL B T, JAMES M E. Recirculating aquaculture systems[M]. New York: NRAC Publication, 2002: 285-293.
    [13]
    宋奔奔, 吴凡, 倪琦, 等. 封闭循环水养殖中曝气系统设计及曝气器的选择[J]. 渔业现代化, 2011, 38(3): 6-10. doi: 10.3969/j.issn.1007-9580.2011.03.002
    [14]
    SPEECE R E. Hypolimnion aeration[J]. J Am Water Works Ass, 1971, 63(1): 6-9. doi: 10.1002/j.1551-8833.1971.tb04018.x
    [15]
    XIONG R Q, CHUNG J N. An experimental study of the size effect on adiabatic gas-liquid two-phase flow patterns and void fraction in micro channels[J]. Phys Fluids, 2007, 19(3): 1139-1158.
    [16]
    陈有光, 段登选, 陈秀丽, 等. 工厂化养鱼中氧气锥的增氧规律[J]. 渔业现代化, 2009, 36(3): 26-30. doi: 10.3969/j.issn.1007-9580.2009.03.006
    [17]
    房燕, 曹广斌, 韩世成, 等. 基于Fluent的工厂化水产养殖增氧锥的数值模拟及结构优化设计[J]. 江苏农业科学, 2013, 41(4): 355-358. doi: 10.3969/j.issn.1002-1302.2013.04.135
    [18]
    ASHLEY K, FATTAH K, MAVINIC D, et al. Analysis of design factors influencing the oxygen transfer of a pilot-scale speece cone hypolimnetic aerator[J]. J Environ Eng, 2014, 140(3): 1-9.
    [19]
    杨菁, 管崇武, 宋红桥, 等. 循环水养殖系统氧锥运行参数设计[J]. 渔业现代化, 2023, 50(2): 1-6. doi: 10.3969/j.issn.1007-9580.2023.02.001
    [20]
    王君, 谢永和, 李德堂, 等. 养殖工船高压增氧锥外形优选及配件开发[J]. 南方水产科学, 2024, 20(1): 74-80. doi: 10.12131/20230140
    [21]
    刘晃, 徐皓, 庄志猛. 封闭式养殖工船研发历程回顾[J]. 渔业现代化, 2022, 49(5): 1-7.
    [22]
    黄文超, 赵新颖. 养殖工船建设运营经济效益分析[J]. 中国渔业经济, 2024, 42(1): 72-82. doi: 10.3969/j.issn.1009-590X.2024.01.009
    [23]
    李明云, 苗亮, 陈炯, 等. 封闭式工船养殖大黄鱼容量的计算及其评估[J]. 科学养鱼, 2021(12): 75-76. doi: 10.3969/j.issn.1004-843X.2021.12.042
    [24]
    胡坤, 邓荣, 梁栋. ANSYS CFD网格划分技术指南[M]. 北京: 化学工业出版社, 2019: 68.
    [25]
    陈彩霞, 夏梓洪. 计算流体力学基础与多相流模拟应用[M]. 北京: 科学出版社, 2020: 12-13.
    [26]
    胡坤, 顾中浩, 马海峰. CAE分析大系ANSYSCFD疑难问题实例[M]. 北京: 人民邮电出版社, 2020: 184.
    [27]
    BOYD C E. Pond water aeration systems[J]. Aquac Eng, 1998, 18(1): 9-40. doi: 10.1016/S0144-8609(98)00019-3
    [28]
    阎昌琪, 气液两相流[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 2-5.
    [29]
    覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223. doi: 10.7536/PC160416
    [30]
    罗涛, 王洪臣, 徐相龙, 等. 微孔曝气气泡生成阶段的并聚规律研究[J]. 环境工程, 2019, 37(9): 30-33, 29.

Catalog

    Article views (47) PDF downloads (0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return