Citation: | JIANG Manju, GUO Yu, QIN Chuanxin, XIN Yi, ZHAO Xinran, YU Gang, MA Zhenhua, YANG Yukai. Investigation on behavioral preferences of Lutjanus erythropterus juvenile towards artificial reef models with different pore shapes and sizes[J]. South China Fisheries Science, 2024, 20(5): 42-52. DOI: 10.12131/20240135 |
The construction of artificial reefs is crucial for maintaining marine ecology and protecting fishery resources. The pore shape and size are the key elements for the structural design with a significant impact on the aggregation of fish. We designed and made the artificial reef models with different pore shapes (Round, square, diamond) and different sizes (1.0, 2.0, 3.0, 4.0 cm) for Lutjanus erythropterus, a common reef-dwelling fish in the artificial reef area. Then we observed the attractive effect on the juveniles and observed their behavioral changes in an indoor experimental pool. The results show that without the artificial reef model, the juveniles mainly concentrated in the peripheral area of experimental pool. But when the reef model was placed, the average distribution ratio of the juveniles in the reef area increased significantly (p<0.05). For the pore shape study, there was no significant difference in the average distribution rate of the juveniles in the artificial reef placement area (VI area) among the three treatment groups (p>0.05), with the proportion of the diamond treatment group being the highest [(19.84±6.08)%]. However, for the pore size study, there were significant differences among the three treatment groups (p<0.05), 4.0 cm size group (About 2.0 times the body height of juvenile) being the highest [(25.36±5.04)%], while 1.0 cm size group (About 0.5 times the body height of juvenile) being the lowest [(14.54±3.09)%]. In terms of activity ability, there were obvious differences between the artificial reef model experimental group and the blank control group. The average speed of juveniles decreased from (13.36±5.21) cm·s−1 in the control group to (4.29±1.59) cm·s−1 in the reef group, the average acceleration decreased from (106.93±69.17) cm·s−2 to (54.45±21.47) cm·s−2, and the percentage of activity time decreased from (68.01±8.61)% to (40.29±11.85)%, and all were the lowest in the circular 4.0 cm group, the square 4.0 cm group and the diamond 4.0 cm group. It is showed that at this stage, L. erythropterus juvenile has the strongest tropism to the artificial reef model with a circular pore shape and the size group of 4.0 cm, but the activity level is relatively low, showing the most significant attractive effect.
[1] |
HARRISON S, ROUSSEAU M. Comparison of artificial and natural reef productivity in Nantucket Sound, MA, USA[J]. Estuar Coast, 2020, 43(8): 2092-2105. doi: 10.1007/s12237-020-00749-6
|
[2] |
郭禹, 章守宇, 林军. 基于上升流效应的单位鱼礁建设模式研究[J]. 南方水产科学, 2020, 16(5): 71-79. doi: 10.12131/20200008
|
[3] |
张皓铭, 谢笑艳, 陈丕茂, 等. 人工鱼礁竖板不同方形孔径对黑鲷幼鱼诱集效果研究[J]. 南方水产科学, 2022, 18(1): 52-58. doi: 10.12131/20210103
|
[4] |
王新维, 李杨帆. 海洋经济统计体系优化策略研究: 基于国际比较视角[J]. 中国海洋大学学报 (社会科学版), 2022(6): 45-53.
|
[5] |
KOMYAKOVA V, CHAMBERLAIN D, JONES G P, et al. Assessing the performance of artificial reefs as substitute habitat for temperate reef fishes: implications for reef design and placement[J]. Sci Total Environ, 2019, 668: 139-152. doi: 10.1016/j.scitotenv.2019.02.357
|
[6] |
XUE D W, WANG C Y, HUANG T, et al. Flow field effects and physical stability of pyramidal artificial reef with different slope angles[J]. Ocean Eng, 2023, 283: 115059. doi: 10.1016/j.oceaneng.2023.115059
|
[7] |
王佳美, , 唐振朝, 丁玲, 等. 基于水槽模型试验的人工鱼礁局部冲淤研究[J]. 南方水产科学, 2020, 16(6): 32-38.
|
[8] |
HARASTI D, MALCOLM H, GALLEN C, et al. Appropriate set times to represent patterns of rocky reef fishes using baited video[J]. J Exp Mar Biol Ecol, 2015, 463: 173-180. doi: 10.1016/j.jembe.2014.12.003
|
[9] |
HYLKEMA A, DEBROT A O, OSINGA R, et al. Fish assemblages of three common artificial reef designs during early colonization[J]. Ecol Eng, 2020, 157: 105994. doi: 10.1016/j.ecoleng.2020.105994
|
[10] |
LOWRY M, FOLPP H, GREGSON M, et al. Comparison of baited remote underwater video (BRUV) and underwater visual census (UVC) for assessment of artificial reefs in estuaries[J]. J Exp Mar Biol Ecol, 2012, 416/417: 243-253. doi: 10.1016/j.jembe.2012.01.013
|
[11] |
张云岭, 赵祺, 齐遵利, 等. 几种不同类型人工鱼礁的稳定性和集鱼效果比较[J]. 河北渔业, 2021(1): 4-10. doi: 10.3969/j.issn.1004-6755.2021.01.002
|
[12] |
周艳波, 蔡文贵, 陈海刚, 等. 不同人工鱼礁模型对花尾胡椒鲷的诱集效应[J]. 热带海洋学报, 2010, 29(3): 103-107. doi: 10.3969/j.issn.1009-5470.2010.03.017
|
[13] |
JIANG Z Y, LIANG Z L, ZHU L X, et al. Numerical simulation of effect of guide plate on flow field of artificial reef[J]. Ocean Eng, 2016, 116: 236-241. doi: 10.1016/j.oceaneng.2016.03.005
|
[14] |
WANG G, WAN R, WANG X X, et al. Study on the influence of cut-opening ratio, cut-opening shape, and cut-opening number on the flow field of a cubic artificial reef[J]. Ocean Eng, 2018, 162: 341-352. doi: 10.1016/j.oceaneng.2018.05.007
|
[15] |
沈裕鑫, 张硕, 吴立珍, 等. 灰色拓扑模型在海州湾人工鱼礁区水质预测的应用[J]. 南方水产科学, 2020, 16(2): 77-86. doi: 10.12131/20190171
|
[16] |
陈治, 王海山, 叶乐, 等. 武莲港人工鱼礁的资源养护效果[J]. 海南热带海洋学院学报, 2022, 29(5): 45-53.
|
[17] |
于莹, 徐晓甫, 王硕, 等. 天津大神堂海域人工鱼礁区砂壳纤毛虫群落的季节变化[J]. 海洋科学, 2021, 45(11): 96-104.
|
[18] |
张荣良, 刘辉, 孙东洋, 等. 烟台近岸人工鱼礁与自然岩礁底层渔业生物群落特征对比分析[J]. 海洋与湖沼, 2021, 52(3): 697-707. doi: 10.11693/hyhz20201000296
|
[19] |
陈汉坚, 孔令兴. 北部湾红鱼资源的回顾及保护对策[J]. 中国水产, 1991(12): 12-13.
|
[20] |
张宗航, 董建宇, 张雪梅, 等. 环境丰容对早期发育阶段许氏平鲉趋礁行为的影响[J]. 生态学报, 2018, 38(22): 8223-8233.
|
[21] |
PITCHER T J, MAGURRAN A E, WINFIELD I J. Fish in larger shoals find food faster[J]. Behav Ecol Sociobiol, 1982, 10: 149-151. doi: 10.1007/BF00300175
|
[22] |
陶峰, 贾晓平, 陈丕茂, 等. 人工鱼礁礁体设计的研究进展[J]. 南方水产科学, 2008, 4(3): 64-69.
|
[23] |
唐衍力, 房元勇, 梁振林, 等. 不同形状和材料的鱼礁模型对短蛸诱集效果的初步研究[J]. 中国海洋大学学报 (自然科学版), 2009, 39(1): 43-46, 52.
|
[24] |
田方, 唐衍力, 唐曼, 等. 几种鱼礁模型对真鲷诱集效果的研究[J]. 海洋科学, 2012, 36(11): 85-89.
|
[25] |
BLANCHET S, DODSON J J, BROSSE S. Influence of habitat structure and fish density on Atlantic salmon Salmo salar L. territorial behaviour[J]. J Fish Biol, 2006, 68(3): 951-957. doi: 10.1111/j.0022-1112.2006.00970.x
|
[26] |
KASUMYAN A O, PAVLOV D S. Evolution of schooling behavior in fish[J]. J Ichthyol, 2018, 58(5): 670-678. doi: 10.1134/S0032945218050090
|
[27] |
何大仁, 施养明. 鱼礁模型对黑鲷的诱集效果[J]. 厦门大学学报 (自然科学版), 1995, 34(4): 653-658.
|
[28] |
黄六一, 徐基强, 陈婧, 等. 光照对花鲈行为反应的影响研究[J]. 渔业信息与战略, 2018, 33(1): 45-50.
|
[29] |
陈勇, 刘晓丹, 吴晓郁, 等. 不同结构模型礁对许氏平鲉幼鱼的诱集效果[J]. 大连水产学院学报, 2006, 21(2): 153-157.
|
[30] |
周艳波, 蔡文贵, 陈海刚, 等. 试验水槽中多种人工鱼礁模型组合对紫红笛鲷幼鱼的诱集效果[J]. 台湾海峡, 2012, 31(2): 231-237.
|
[31] |
郑德斌, 栾凯, 刘克奉, 等. 四种方形鱼礁对黑鲪和大陇六线鱼的集鱼效果[J]. 河北渔业, 2019(8): 1-4. doi: 10.3969/j.issn.1004-6755.2019.08.001
|
[32] |
李磊, 陈栋, 彭建新, 等. 不同人工鱼礁模型对黑棘鲷、中国花鲈和大黄鱼的诱集效果比较[J]. 大连海洋大学学报, 2019, 34(3): 413-418.
|
[33] |
JAXION-HARM J, SZEDLMAYER S T. Depth and artificial reef type effects on size and distribution of red snapper in the northern Gulf of Mexico[J]. N Am J Fish Manage, 2015, 35(1): 86-96. doi: 10.1080/02755947.2014.982332
|
[34] |
周艳波, 蔡文贵, 陈海刚, 等. 10种人工鱼礁模型对黑鲷幼鱼的诱集效果[J]. 水产学报, 2011, 35(5): 711-718.
|
[35] |
汪振华, 赵静, 王凯, 等. 马鞍列岛岩礁生境鱼类群落结构时空格局[J]. 生态学报, 2013, 33(19): 6218-6226.
|
[36] |
于洋, 谢明原. 鱼类游泳能力评价指标及其测定方法研究现状[J]. 农业与技术, 2021, 41(19): 116-118.
|
[37] |
WATZ J. Structural complexity in the hatchery rearing environment affects activity, resting metabolic rate and post-release behaviour in brown trout Salmo trutta[J]. J Fish Biol, 2019, 95(2): 638-641. doi: 10.1111/jfb.14049
|
[38] |
van der SALM A L, SPANINGS F A T, GRESNIGT R, et al. Background adaptation and water acidification affect pigmentation and stress physiology of tilapia, Oreochromis mossambicus[J]. Gen Comp Endocr, 2005, 144(1): 51-59. doi: 10.1016/j.ygcen.2005.04.017
|
[1] | XIAN Hualin, TANG Changsheng, ZHANG Yangyang, ZHANG Xiaolin, LIAO Zhi, ZHOU Yuqin, XIE Shuye, YAN Xiaojun. Construction of DNA metabarcoding database of zooplankton in Zhoushan sea area based on mitochondrial cytochrome COI and 18S rRNA gene[J]. South China Fisheries Science. DOI: 10.12131/20250014 |
[2] | WANG Liting, HUANG Jianhua, ZHOU Falin, LI Yundong, JIANG Song, YANG Qibin, JIANG Shigui, SHI Jianzhi, DING Yangyang, YANG Lishi. Effcet of two bacterial species on expression of genes related to immunity and DNA methylation in Penaeus monodon[J]. South China Fisheries Science. DOI: 10.12131/20250026 |
[3] | GAO Jie, GUO Huayang, LIU Mingjian, LIU Baosuo, ZHU Kecheng, ZHANG Nan, GUO Liang, ZHANG Dianchang. Response of caspase genes to Streptococcus agalactiae in cells of spleen of golden pompano |
[4] | JIANG Peiwen, LI Min, ZHANG Shuai, CHEN Zuozhi, XU Shannan. Construction of DNA meta-barcode database of fish in Pearl River Estuary based on mitochondrial cytochrome COI and 12S rDNA gene[J]. South China Fisheries Science, 2022, 18(3): 13-21. DOI: 10.12131/20210210 |
[5] | ZHENG Deyu, GUO Yijia, YANG Tianyan, GAO Tianxiang, ZHENG Yao, YUAN Donghao, SI Shujin. Genetic diversity analysis of Sillago japonica based on mitochondrial DNA ND2 gene[J]. South China Fisheries Science, 2019, 15(5): 84-91. DOI: 10.12131/20190042 |
[6] | LI Ying, LIU Zhenxing, MA Yanping, CAO Junming, MA Jiangyao, HAO Le, LIANG Zhiling, KE Hao, LI Yugu. Protection of Jian carp with immunization of CyHV-3 ORF65 DNA vaccine[J]. South China Fisheries Science, 2019, 15(4): 122-126. DOI: 10.12131/20190033 |
[7] | XIE Yundan, FENG Juan, LIU Chan, DENG Yiqin, WANG Jiangyong, SU Youlu. Comparative pathological study of tilapia naturally infected with Streptococcus agalactiae and virulence gene profiling of isolated strains[J]. South China Fisheries Science, 2019, 15(2): 47-57. DOI: 10.12131/20180185 |
[8] | ZENG Zucong, CAO Jianmeng, LU Maixin, KE Xiaoli, LIU Zhigang, GAO Fengying, ZHU Huaping. Construction and expression of prokaryotic expression vector for LrrG-Sip fusion gene of Streptococcus agalactiae in tilapia[J]. South China Fisheries Science, 2014, 10(5): 17-23. DOI: 10.3969/j.issn.2095-0780.2014.05.003 |
[9] | MA Yanping, LI Jiabin, HAO Le, LIU Zhenxing, FENG Guoqing, ZHOU Jieshan, KE Hao. Cloning of Streptococcus agalactiae luxS gene from tilapia and 3D structure prediction of deduced protein[J]. South China Fisheries Science, 2013, 9(1): 43-47. DOI: 10.3969/j.issn.2095-0780.2013.01.007 |
[10] | MU Xidong, BAI Junjie, YE Xing, WANG Xuejie, HU Yinchang, LUO Jianren. Sequence analysis of mitochondrial cytochrome b gene of Carassius auratus var.and phylogenetic relationships of C. auratus var.and C. auratus[J]. South China Fisheries Science, 2007, 3(1): 26-30. |
1. |
庄平,赵峰,罗刚,张涛,石小涛,冯广朋,王思凯. 水生生物资源增殖放流的发展历程与问题思考. 水生生物学报. 2025(01): 43-54 .
![]() | |
2. |
章欣仪,郑春芳,秦松,刘伟成,张川,范青松. 基于Ecopath模型的瓯江口斑鰶、刀鲚和鮻的增殖生态容量评估. 水产学报. 2025(02): 97-108 .
![]() | |
3. |
肖玉林,施凯,许强. 海南岛热带典型天然牡蛎礁生态系统营养结构与功能评价. 生态学报. 2025(04): 1697-1710 .
![]() | |
4. |
冯瑞玉,陶峰,郭禹,秦传新,孙金辉,吴一桂,王静. 基于Ecopath模型的增殖放流对南朗水域生态系统的影响. 水产学报. 2025(05): 94-108 .
![]() | |
5. |
王孟佳,徐开达,王好学,周永东,李鹏飞,朱凯,陈欣怡,陈璐. 浙江近海甲壳类资源增殖放流现状研究. 海洋开发与管理. 2024(01): 136-144 .
![]() | |
6. |
杨禧越,刘永,李纯厚,唐广隆,张达娟,游奕来,潘淑芳,郑秋实,肖雅元,吴鹏. 珠江口万山群岛黄鳍棘鲷食性随年龄的变化特征. 中国水产科学. 2024(02): 219-231 .
![]() | |
7. |
韩毓,张杭君. 水产生态容量及在淡水增养殖上的应用研究进展. 水产科学. 2024(04): 675-682 .
![]() | |
8. |
张聪,孔令宇. 海上油气田开发工程渔业资源补偿措施研究. 环境保护. 2024(15): 26-28 .
![]() | |
9. |
袁华荣,章守宇,陈丕茂. 海洋牧场建设效益评价研究进展与展望. 南方水产科学. 2024(05): 1-13 .
![]() | |
10. |
范泽宇,白雪兰,徐聚臣,黄路全,王晓宁,吕亚兵,侯杰,何绪刚. 运用Ecopath模型构建大水面增殖放流方案——以洈水水库为例. 华中农业大学学报. 2023(01): 82-91 .
![]() | |
11. |
方光杰,周永东,梁君,徐开达,龙翔宇,刘润泽. 岛礁型海洋牧场聚鱼增殖模式综述. 浙江海洋大学学报(自然科学版). 2023(02): 165-172 .
![]() | |
12. |
冯瑞玉,郭禹,李金明,孙金辉,于刚,吴一桂,秦传新. 基于EnhanceFish模型的鱼类增殖放流策略研究:以中山市南朗水域黄鳍棘鲷增殖放流为例. 渔业科学进展. 2023(05): 1-10 .
![]() | |
13. |
江满菊,郭禹,秦传新,潘莞倪,于刚,马振华. 黄鳍棘鲷幼鱼对不同开孔形状和直径的人工鱼礁模型的行为响应. 中国水产科学. 2023(12): 1496-1506 .
![]() | |
14. |
裴精花,陈清华,范金金,刘伟杰,郭照良,隋昊志. 珠江口海域游泳动物群落结构及多样性特征. 南方农业学报. 2023(12): 3727-3738 .
![]() | |
15. |
洪小帆,陈作志,张俊,江艳娥,龚玉艳,蔡研聪,杨玉滔. 基于Ecopath模型的七连屿礁栖性生物的生态承载力分析. 热带海洋学报. 2022(01): 15-27 .
![]() | |
16. |
孔业富,尹成杰,王林龙,刘杨,林黎,康斌. 基于Ecopath模型的三门湾生态系统结构与功能. 应用生态学报. 2022(03): 829-836 .
![]() | |
17. |
袁旸,线薇薇,张辉. 基于生态通道模型的我国渔业资源生态容量研究进展. 海洋科学. 2022(07): 105-119 .
![]() | |
18. |
陈璐,王好学,徐开达,吕泽砚,黄波,李哲,梁君,周永东,李鹏飞,刘连为. 浙江近岸水域岛礁性鱼类增殖放流现状分析. 浙江海洋大学学报(自然科学版). 2022(05): 459-465+472 .
![]() | |
19. |
马文刚,尹洪洋,孙春阳,王兆国,魏一凡,冯博轩,奉杰,许强,李秀保,王爱民. 热带典型珊瑚岛礁海洋牧场花刺参底播增殖容量及其生态效应预测. 海洋与湖沼. 2022(06): 1573-1584 .
![]() | |
20. |
朱克诚,刘宝锁,伞利择,刘波,张楠,郭华阳,郭梁,江世贵,张殿昌. 黃鳍棘鲷放流苗种的遗传质量评估. 广东海洋大学学报. 2021(03): 138-144 .
![]() | |
21. |
范泽宇,白雪兰,徐聚臣,王晓宁,吕亚兵,侯杰,何绪刚. 基于Ecopath模型的洈水水库生态系统特征及鲢、鳙生态容量分析. 中国水产科学. 2021(06): 773-784 .
![]() | |
22. |
王书献,张胜茂,戴阳,王永进,隋江华,朱文斌. 利用声呐数据提取磷虾捕捞深度方法研究. 南方水产科学. 2021(04): 91-97 .
![]() | |
23. |
许龙飞,梁志强,李君轶,郭星辰,姜海波,安苗,邵俭. 野生鲫、鳡形态性状与体质量的通径分析. 山地农业生物学报. 2021(06): 71-75 .
![]() | |
24. |
林坤,麦广铭,王力飞,王学锋. 2015—2018年珠江口近岸海域鱼类群落结构及其稳定性. 水产学报. 2020(11): 1841-1850 .
![]() | |
25. |
戴媛媛,吴会民,张韦,王健,缴建华. 基于Ecopath模型的我国海洋渔业生态系统研究概况. 海洋湖沼通报. 2020(06): 150-157 .
![]() |