HONG Yongqiang,  XIE Yonghe,  LIU Luqiang,  DONG Shaoguang,  LI Detang,  WANG Yunjie,  JIANG Xuyang,  ZHANG Jiaqi,  WANG Jun,  GAO Weipeng,  CHEN Qing. Research on water quality dissolved oxygen prediction method based on ESSA-LSTM for aquaculture ships[J]. South China Fisheries Science, 2024, 20(1): 62-73. DOI: 10.12131/20230185
Citation: HONG Yongqiang,  XIE Yonghe,  LIU Luqiang,  DONG Shaoguang,  LI Detang,  WANG Yunjie,  JIANG Xuyang,  ZHANG Jiaqi,  WANG Jun,  GAO Weipeng,  CHEN Qing. Research on water quality dissolved oxygen prediction method based on ESSA-LSTM for aquaculture ships[J]. South China Fisheries Science, 2024, 20(1): 62-73. DOI: 10.12131/20230185

Research on water quality dissolved oxygen prediction method based on ESSA-LSTM for aquaculture ships

More Information
  • Received Date: September 25, 2023
  • Revised Date: November 19, 2023
  • Accepted Date: December 07, 2023
  • Available Online: December 12, 2023
  • In order to accurately predict the dissolved oxygen content in water quality parameters, we adopted a Long Short Term Memory (LSTM) model, and proposed an Enhanced Sparrow Search Algorithm (ESSA) to improve the accuracy of the prediction rate. Besides, to prompt individual sparrows to swiftly depart from the local optimal solution, the algorithm introduced Circle chaotic mapping for population initialization, and integrated sine-cosine algorithm and Levy flight strategy to update the positions of scouts and trackers, respectively. Firstly, we compared ESSA with various other algorithms for multi form benchmark function testing, and the results reveal that the algorithm exhibited excellent performance and robustness on multiple benchmark functions. Subsequently, we used ESSA to explore LSTM model parameters and compared it with other optimization strategies, and the results show that the prediction rate based on ESSA-LSTM model reached 99.071%, which was improved by 2.142%, 6.653%, 6.682% and 7.714% compared with basic Sparrow Search Algorithm (SSA), Gray Wolf Optimization Algorithm (GWO), Marine Predation Algorithm (MPA), and Whale Optimization Algorithm (WOA), respectively. The results show that the use of ESSA significantly improves the prediction rate of dissolved oxygen (DO) and effectively reduces the blindness and time cost of parameter settings.

  • [1]
    胡金有,  王靖杰,  张小栓, 等.  水产养殖信息化关键技术研究现状与趋势 [J].  农业机械学报,  2015,  46(7),  251-263.
    [2]
    刘双印.  基于计算智能的水产养殖水质预测预警方法研究 [D].  北京:  中国农业大学,  2014:  68-78.
    [3]
    徐琰斐,  徐皓,  刘晃, 等.  中国深远海养殖发展方式研究 [J].  渔业现代化,  2021,  48(1): 9-15.
    [4]
    何清,  李宁,  罗文娟, 等.  大数据下的机器学习算法综述 [J].  模式识别与人工智能,  2014,  27(4): 327-336.
    [5]
    沈时宇, 陈明. Prophet时序模型在短期水质溶氧预测中的应用 [J]. 渔业现代化, 2020, 47(3): 29-35.
    [6]
    REN Q,  WANG X,  LI W,  et al.   Research of dissolved oxygen prediction in recirculating aquaculture systems based on deep belief network[J].  Aquac Eng,  2020,  90:  102085.
    [7]
    CAO X,  REN N,  TIAN G,  et al.  A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT[J].  Comput Electron Agric,  2021,  181:  105955.
    [8]
    宦娟,  曹伟建,  秦益霖, 等.  基于游程检测法重构集合经验模态的养殖水质溶氧预测 [J].  农业工程学报,  2018,  34(8):  220-226.
    [9]
    林彬彬,  袁泉,  田志新, 等.  基于SSA-LSTM模型的黄鳝池溶氧预测研究 [J].  渔业现代化,  2023,  50(1):  71-79.
    [10]
    HONG J, SHEN B, XUE J, et al. A vector-encirclement-model-based sparrow search algorithm for engineering optimization and numerical optimization problems[J].  Appl Soft Comput,  2022,  131:  109777.
    [11]
    XUE J K,  SHEN B.  A novel swarm intelligence optimization approach:  sparrow search algorithm[J].  Syst Sci Control Eng,  2020,  8(1):  22-34.
    [12]
    HOCHREITE S,  SCHMIDHUBER J.  Long short-term memory[J].  Neural Comput,  1997,  9(8):  1735-1780.
    [13]
    FARAMARZI A,  HEIDARINEJAD M,  MIRJALILI S,  et al.  Marine predators algorithm:  a nature-inspired metaheuristic[J]. Expert Syst Appl,  2020,  152:  113377.
    [14]
    张晓凤,  王秀英.  灰狼优化算法研究综述 [J].  计算机科学,  2019,  46(3):  30-38.
    [15]
    MIRJALILI S,  LEWIS A.  The whale optimization algorithm[J].  Adv Eng Softw,  2016,  95:  51-67.
    [16]
    李争,  罗晓瑞,  张杰, 等.  基于改进麻雀搜索算法的光伏功率短期预测 [J].  太阳能学报,  2023,  44(6):  284-289.
    [17]
    胡顺强,  崔东文.  基于海洋捕食者算法优化的长短期记忆神经网络径流预测 [J].  中国农村水利水电,  2021(2):  78-82, 90.
    [18]
    薛阳,  燕宇铖,  贾巍, 等.  基于改进灰狼算法优化长短期记忆网络的光伏功率预测 [J].  太阳能学报,  2023,  44(7):  207-213.
    [19]
    吴会咏,  靳舒春,  安雪洁.  基于改进鲸鱼算法优化神经网络的飞机空气循环系统建模及故障分析 [J].  西北师范大学学报(自然科学版),  2023,  59(2):  27-36.
    [20]
    杨寒雨,  赵晓永,  王磊.  数据归一化方法综述 [J].  计算机工程与应用,  2023, 59(3):  13-22.
    [21]
    秦文虎,  陈溪莹.  基于长短时记忆网络的水质预测模型研究 [J].  安全与环境学报,  2020,  20(1):  328-334.
    [22]
    王丹.  随机梯度下降算法研究 [D].  西安:  西安建筑科技大学,  2020:  17-27.
    [23]
    薛建凯.  一种新型的群智能优化技术的研究与应用 [D].  上海:  东华大学,  2020:  21-28.
    [24]
    王鑫,  张奇志.  改进麻雀搜索算法优化支持向量机的井漏预测 [J].  科学技术与工程,  2022,  22(34):  15115-15122.
    [25]
    王振东,  汪嘉宝,  李大海.  一种增强型麻雀搜索算法的无线传感器网络覆盖优化研究 [J].  传感技术学报,  2021,  34(6):  818-828.
    [26]
    张伟康,  刘升,  任春慧.  混合策略改进的麻雀搜索算法 [J].  计算机工程与应用,  2021,  57(24):  74-82.
    [27]
    周茜.  混沌理论及应用若干问题的研究 [D].  天津:  南开大学,  2010:  3-13.
    [28]
    MIRJALILI S.  SCA: a sine cosine algorithm for solving optimization problems[J].  Knowl Based Syst,  2016,  96:  120-133.
    [29]
    RATHER S A,  DAS S. Levy flight and chaos theory-based gravitational search algorithm for image segmentation[J]. Math, 2023, 11(18): 3913. doi: 10.3390/math11183913
    [30]
    张严,  秦亮曦.  基于Levy飞行策略的改进樽海鞘群算法 [J].  计算机科学,  2020,  47(7):  154-160.
    [31]
    毛清华,  张强,  毛承成, 等.  混合正弦余弦算法和Lévy飞行的麻雀算法 [J].  山西大学学报(自然科学版),  2021,  44(6): 1086-1091.

Catalog

    Article views (98) PDF downloads (34) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return