Citation: | XING Wang, HUANG Xiaohua, LI Gen, PANG Guoliang, YUAN Taiping. Construction of a dynamics simulation system for net cleaning robot based on Gazebo[J]. South China Fisheries Science, 2024, 20(1): 1-10. DOI: 10.12131/20230189 |
Deep-sea cage aquaculture is an important marine aquaculture mode. Regular cleaning of cage nets is a critical step to ensure aquaculture quality and safety. Currently, nets are commonly cleaned manually, which is time-consuming and labor-intensive. As deep-sea cages grow larger, their manual cleaning become more difficult. Net washing robots provide a safer and more convenient way to clean nets for deep-sea cages. However, it is challenging to design controllers with strong disturbance resistance and low energy consumption for net washing robots, as the forces are difficult to model and the states are hard to observe during net cleaning and underwater shuttling. Moreover, conducting comprehensive experiments and data recording requires high costs and much time. To address these problems, we constructed a simulation system for a net washing robot based on the physical simulation environment Gazebo, considering the presence of thrusters and washing discs. Besides, we analyzed the effects of various hydrodynamic characteristics in underwater environment, such as added mass and damping, and factors like flow field environment on the washing robot. The established net washing robot can obtain complete data on the underwater operation of the net washing robot, verify control performance, and compare model performance more easily, thereby assisting in the controller development of washing robots.
[1] |
侯海燕, 鞠晓晖, 陈雨生. 国外深海网箱养殖业发展动态及其对中国的启示[J]. 世界农业, 2017(5): 162-166.
|
[2] |
徐皓, 陈家勇, 方辉, 等. 中国海洋渔业转型与深蓝渔业战略性新兴产业[J]. 渔业现代化, 2020, 47(3): 1-9.
|
[3] |
韩立民, 王金环. “蓝色粮仓”空间拓展策略选择及其保障措施[J]. 中国渔业经济, 2013, 31(2): 53-58.
|
[4] |
朱玉东, 鞠晓晖, 陈雨生. 我国深海网箱养殖现状、问题与对策[J]. 中国渔业经济, 2017, 35(2): 72-78.
|
[5] |
张汉华, 梁超愉, 吴进锋, 等. 大鹏湾深水网箱养殖区的污损生物研究[J]. 中国水产科学, 2003, 10(5): 414-418.
|
[6] |
彭安华, 刘成文, 陆波. 一种带有清洗装置和数据采集系统的深水网箱[J]. 南方农业, 2016, 10(3): 169-171.
|
[7] |
宋协法, 孙跃, 何佳, 等. 深水网箱清洗技术及装备研究进展[J]. 渔业现代化, 2021, 48(5): 1-9.
|
[8] |
ALBITAR H, ANANIEV A, KAZAKOV I. In-water surface cleaning robot: concept, locomotion and stability[J]. Int J Mechatron Autom, 2014, 4(2): 104-115. doi: 10.1504/IJMA.2014.062338
|
[9] |
OSAKA T, NORITA J. Submersible cleaning robot: US20060282503[P]. 2014-06-24.
|
[10] |
JENSEN V. Fish farm cleaning robot: NO20170580A1[P]. 2018-10-08.
|
[11] |
FORD M. Net cleaning device for in-situ cleaning of a submerged net, propeller for use with net cleaning device, method and system: WO2020069556A1[P]. 2020-04-09.
|
[12] |
庞洪臣, 杨芳, 俞国燕, 等. 一种新型深海网箱清洗机器人: CN107052002A[P]. 2017-08-18.
|
[13] |
青岛炬荣工程科技有限公司. 空化射流水下网衣清洗机器人: CN201910677594.2[P]. 2019-10-18.
|
[14] |
付宗国, 杨俭健, 刘莹莹, 等. 一种深水网箱养殖水下智能清理机器人: CN103144118A[P]. 2013-06-12.
|
[15] |
青岛森科特智能仪器有限公司, 烟台中集蓝海洋科技有限公司. 一种模块化网箱水下机器人: CN202021730216.0[P]. 2021-04-23.
|
[16] |
LINDGREN P B. Aquaculture cage screen and cleaning apparatus: US 2012/0260443 A1[P]. 2012-10-18.
|
[17] |
LINDGREN P B. Fish cage screen and cleaning apparatus: US 2012/0260861 A1[P]. 2012-10-18.
|
[18] |
飞马滨 (青岛) 智能科技有限公司. 一种用于海洋牧场网箱清洗的水下机器人: CN202110996755.1[P]. 2021-11-26.
|
[19] |
FARLEY A, WANG J, MARSHALL J A. How to pick a mobile robot simulator: a quantitative comparison of CoppeliaSim, Gazebo, MORSE and Webots with a focus on accuracy of motion[J]. Simul Model Pract Th, 2022, 120: 102629. doi: 10.1016/j.simpat.2022.102629
|
[20] |
李志文, 程志江, 杜一鸣, 等. 基于ROS的清洁机器人运动控制研究[J]. 计算机仿真, 2023, 40(4): 455-460.
|
[21] |
KOENIG N, HOWARD A. Design and use paradigms for Gazebo, an open-source multi-robot simulator[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566). IEEE, 2004, 3: 2149-2154.
|
[22] |
MANHÈS M M M, SCHERER S A, VOSS M, et al. UUV Simulator: a Gazebo-based package for underwater intervention and multi-robot simulation[C]//OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 2016: 1-8. DOI: 10.1109/OCEANS.2016.7761080.
|
[23] |
JOUNG T H, SAMMUT K, HE F, et al. Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis[J]. Int J Nav Archit Ocean Eng, 2012, 4(1): 44-56. doi: 10.2478/IJNAOE-2013-0077
|
[24] |
刘开周, 赵洋. 水下机器人建模与仿真技术[M]. 北京: 科学出版社, 2020: 28.
|
[25] |
宋伟刚. 机器人学: 运动学、动力学与控制[M]. 北京: 科学出版社, 2007: 78.
|
[26] |
FOSSEN, THOR I. Handbook of marine craft hydrodynamics and motion control[M]. Hoboken: Wiley, 2011: 15-52.
|
[27] |
LIMARCHENKO O, SEMENOVICH K. Effect of the Coriolis forces on dynamics of the system reservoir-liquid under uniform outflowing[J]. Math Model Comput, 2018, 5(1): 34-40. doi: 10.23939/mmc2018.01.034
|
[28] |
潘昊东, 王志光, 刘纯虎. 流线型高速 ROV 螺旋桨水动力性能分析[J]. 舰船科学技术, 2020, 42(12): 41-46.
|
[29] |
BERG V. Development and commissioning of a DP system for ROV SF 30k[D]. Trondheim: Norwegian University of Science and Technology, 2012: 30-31.
|
[30] |
ANTONELLI G. Underwater robots[M]. Berlin: Springer, 2018: 57.
|
[31] |
CHRIST R D, WERNLI R L. ROV技术手册: 水下机器人使用指南[M]. 中国造船工程学会《船舶工程》编辑部译. 上海: 上海交通大学出版社, 2018: 19-38.
|
[32] |
RUE H, HELD L. Gaussian Markov random fields: theory and applications[M]. New York: Chapman and Hall/CRC, 2005: 15-82.
|
[1] | WANG Shaomin, MA Zhenhua, HU Jing, WANG Wenfei, MAO Fukao, BAI Zemin, WANG Lixian. Hydrodynamic performance of a square-type submersible net cage under combined wind, wave and current conditions[J]. South China Fisheries Science, 2025, 21(2): 1-13. DOI: 10.12131/20240245 |
[2] | FU Zhiguo, DING Guolin, DUAN Jinghui, YAO Yunpeng, WANG Lin. Calculation method of hydrodynamic load factors for aquaculture platform netting[J]. South China Fisheries Science. DOI: 10.12131/20240279 |
[3] | JIANG Shuxia, KONG Xianghong, HUANG Xiaoshuang, YE Xuchang, CAO Daomei. Study on hydrodynamic characteristics and flow field visualization of multi-blade controllable otter board based on CFD[J]. South China Fisheries Science, 2024, 20(5): 136-148. DOI: 10.12131/20240095 |
[4] | LIU Jingbin, TANG Hao, XU Liuxiong, SUN Qiuyang, LIU Wei, YIN Liqiang, ZHANG Feng. Evaluation of scale effect on hydrodynamic force of V-shaped otter board based on CFD[J]. South China Fisheries Science, 2022, 18(5): 128-137. DOI: 10.12131/20210355 |
[5] | HAO Yuxin, WAN Rong, ZHOU Cheng, YE Xuchang, GUAN Qinglong, ZHANG Xiaoxian. Hydrodynamic performance of Argentine shortfin squid (Illex argentinus) bottom trawl[J]. South China Fisheries Science, 2022, 18(5): 118-127. DOI: 10.12131/20210343 |
[6] | SUI Liuyang, HUANG Xiaohua, LIU Haiyang, HU Yu, YUAN Taiping, WANG Shaomin, TAO Qiyou. Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage[J]. South China Fisheries Science, 2021, 17(4): 98-108. DOI: 10.12131/20210049 |
[7] | WANG Shaomin, YUAN Taiping, YANG Xieqiu, TAO Qiyou, SHEN Wei, HU Yu, HUANG Xiaohua. Frequency domain analysis of hydrodynamic characteristics of mariculture ship with truss and plate frame hybrid structure[J]. South China Fisheries Science, 2021, 17(4): 82-90. DOI: 10.12131/20210021 |
[8] | LI Jie, YAN Lei, YANG Bingzhong, ZHANG Peng. Numerical simulation on untrammeled settlement process of falling-net[J]. South China Fisheries Science, 2017, 13(4): 105-114. DOI: 10.3969/j.issn.2095-0780.2017.04.013 |
[9] | LIU Jian, HUANG Hongliang, WU Yue, RAO Xin, LI Lingzhi, CHEN Shuai, YANG Jialiang, ZHOU Bin. Model test of hydrodynamic characteristics of two types of vertical cambered slotted otter boards[J]. South China Fisheries Science, 2015, 11(1): 68-74. DOI: 10.3969/j.issn.2095-0780.2015.01.010 |
[10] | LIU Lili, WAN Rong, WANG Xijie, WANG Sijie, WANG Yunzhong. Analysis of effects of fishery stock enhancement based on system dynamics model[J]. South China Fisheries Science, 2012, 8(1): 16-23. DOI: 10.3969/j.issn.2095-0780.2012.01.003 |
1. |
李明. 七轴浇铸机器人的运动学建模和仿真技术. 现代制造技术与装备. 2024(02): 215-217 .
![]() |