GONG Jinbo, SU Tianfeng, XIA Junhong, GONG Shiyuan, JIANG Shigui. Polymorphism study of the mitochondrial DNA D-loop control region sequences from black porgy Acanthopagrus schlegeli, in the costal waters of China[J]. South China Fisheries Science, 2006, 2(4): 24-30.
Citation: GONG Jinbo, SU Tianfeng, XIA Junhong, GONG Shiyuan, JIANG Shigui. Polymorphism study of the mitochondrial DNA D-loop control region sequences from black porgy Acanthopagrus schlegeli, in the costal waters of China[J]. South China Fisheries Science, 2006, 2(4): 24-30.

Polymorphism study of the mitochondrial DNA D-loop control region sequences from black porgy Acanthopagrus schlegeli, in the costal waters of China

More Information
  • Received Date: December 21, 2005
  • Revised Date: April 05, 2006
  • For inquiring into the genteic diversity and genetic structure of black porgy Acanthopagrus schlegeli, We used polymerase chain reaction (PCR) and direct nucleotide sequencing to analyze the 547~549 bp 5′end of the D-loop region from 72 A.schlegeli samples, which captured from Beihai(Guangxi province), Shenzhen(Guangdong province) and Qingdao(Shandong province). The results show that the A, T, G and C mean contents in those fragments were 30.8%, 21.8%, 36.3%, 11.0%, respectively. There were 55 variable nucleotide positions in those gene fragments, which included 38 transition sites and 13 transvertion sites, 1 insert/ transvertion site and 3 deletion/trasvertion. Comparisons of these 72 partial D-loop sequences revealed 51 mitochondrial haplotypes in A.schlegeli, the haplotype rate was 70.8%. Those indicated that there were rich nucleotide variational polymorphism exited in A.schlegeli. Phylogenetic trees of haplotypes were constructed by NJ method. Neither significant genealogical branches nor geographic cluster were found. It showed that mitochondrial DNA highly variable region sequence is unsuitable to be used as a genetic marker for population identification.

  • [1]
    JEAN Chuentan, LEE Sinche, CHEN Chetsung, et al. Variation in mitochondrial DNA sequences of black porgy, Acanthopagrus schlegeli, in the coastal waters of Taiwan[J]. Zool Stud, 1998, 37(1): 22-30. https://www.semanticscholar.org/paper/Variation-in-Mitochondrial-DNA-Sequences-of-Black-Jean-Lee/27451ea0b4e2ab9e2ef072f0ec1c234bed3b2b51
    [2]
    刘焕章. 鱼类线粒体DNA控制区的结构与进化: 以鳑鲏鱼类为例[J]. 自然科学进展, 2002, 12(3): 266-270. doi: 10.3321/j.issn:1002-008X.2002.03.008
    [3]
    ROSEL P E, HAYGOOD M G, PERRIN W F. Phylogenetic relationships among the True Porpoises (Cetacea: Phocoenidae)[J]. Mol Phylogen Evol, 1995, 4(4): 463-474. doi: 10.1006/mpev.1995.1043
    [4]
    ROSEL P E, ROJAS-BRACHO L. Mitochondrial DNA variation in the critically endangered vaquita Phocoena sinus (Norris and MacFarland)[J]. Mar Mammal Sci, 1999, 15(4): 990-1003. doi: 10.1111/j.1748-7692.1999.tb00874.x
    [5]
    BAKER C S, PERRY A, BANNISTER J L, et al. Abundant mitochondrial DNA variation and world-wide population structure in humpback whales[J]. Proc Natl Acad Sci USA, 1993, 90(19): 8239-8243. https://www.jstor.org/stable/2363001
    [6]
    HOELZEL A R, HALLEY J, O'BRIEN S J, et al. Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks[J]. J Heredity, 1993, 84(6): 443-449. doi: 10.1093/oxfordjournals.jhered.a111370
    [7]
    JEAN C T, HUI C F, LEE S C, et al. Variation in mito-chondrial DNA and phylogenetic relationships of fishes of the subfamily Sparinae (Perciformes: Sparidae) in the coastal waters of Taiwan[J]. Zool Stud, 1995, 34(4): 270-280. https://www.semanticscholar.org/paper/Variation-in-Mitochondrial-DNA-and-Phylogenetic-of-Jean-Hui/df9a17ee536d6e81a7deb55040686a6d83a3fcdf
    [8]
    JEAN C T, LEE S C, HUI C F, et al. Phylogenetic relationships among fish of the subfamily Sparinae (Perci-formes: Sparidae) in the coastal waters of Taiwan[J]. J Zool Syst Evol Res, 1995, 33(1): 49-53. doi: 10.1111/j.1439-0469.1995.tb00208.x
    [9]
    SACCONE C, ATTIMONELLI M, SBISA E. Structural elements highly preserved during the evolution of the D-loop containing region in vertebrate mitochondrial DNA[J]. J Mol Evol, 1987, 26(11): 205-211. doi: 10.1007/BF02099853
    [10]
    TZENG C S, HUI C F, SHEN S C, et al. The complete nucleotide sequence of the Crossostoma lacustre mito-chondrial genome: conservation and variations among vertebrates[J]. Nucleic Acids Res, 1992, 20(22): 4853-4858. https://academic.oup.com/nar/article/20/18/4853/995948
    [11]
    YODER A D, CARTMILL M, RUVOLO M et al. Ancient single origin for Malagasy primates[J]. Proc Natl Acad Sci USA, 1996, 93(10): 5122-5126. doi: 10.1073/pnas.93.10.5122
    [12]
    KUMAR S, TAMURA K, JAKOBSEN I B, et al. MEGA2: molecular evolutionary genetics analysis software[J]. Bioinformatics, 2001, 17(12): 1244-1245. doi: 10.1093/bioinformatics/17.12.1244
    [13]
    FU Y X, LI W H. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133(3): 693-709. doi: 10.1093/genetics/133.3.693
    [14]
    DODA J N, WRIGHT C T, CLAYTON D A. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences[J]. Proc Natl Acad Sci USA, 1981, 78(10): 6116-6120. doi: 10.1073/pnas.78.10.6116
    [15]
    SBISA E, TANZARIELLO F, REYES F, et al. Mammalian mitochondrial D-loop regions tructural analysis: identification of new conserved sequences and the functional and evolutionary implications[J]. Gene, 1997, 205(1/2): 125-140. https://www.researchgate.net/publication/223837344_Mammalian_mitochondrial_D-loop_region_structural_analysis_Identification_of_new_conserved_sequences_and_their_functional_and_evolutionary_implications
    [16]
    SACCONE C, ATTIMONELLI M, SBISA E. Structural elements highly preserved during the evolution of the d-loop region invertebrate mitochondrial DNA[J]. J Mol Evol, 1987, 26(3): 205-211. doi: 10.1007/BF02099853
    [17]
    GUO X H, LIU S J, LIU Y. Comparative analysis of the mitochondrial DNA control region in cyprinus with different ploidy level[J]. Aquac, 2003, 224(1/4): 25-38. https://www.sciencedirect.com/science/article/pii/S0044848603001686
    [18]
    张燕, 张鹗, 何舜平. 中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析[J]. 水生生物学报, 2003, 27(5): 463-467. doi: 10.3321/j.issn:1000-3207.2003.05.004
    [19]
    曾青兰, 刘焕章. 大口胭脂鱼线粒体DNA控制区序列的研究[J]. 湖北大学学报: 自然科学版, 2001, 23(3): 261-264. doi: 10.3969/j.issn.1000-2375.2001.03.021
    [20]
    LEE W J, CONROY J, HOWELL W H. Structure and evolution of teleost mitochondrial control regions[J]. J Mol Evol, 1995, 41(1): 54-66. doi: 10.1007/BF00174041
    [21]
    杨慧荣, 江世贵, 周发林, 等. 3个不同地理群体黑鲷遗传变异的RAPD分析[J]. 中国水产科学, 2004, 11(3): 185-189. doi: 10.3321/j.issn:1005-8737.2004.03.002
  • Related Articles

    [1]QIAO Di, LEI Ning, ZHU Junjie, ZHANG Chaonan, WANG Yanchao, ZHOU Ling. Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2024, 20(4): 164-176. DOI: 10.12131/20240050
    [2]HAO Tian, TANG Xianhu, JIANG Shouwen, WU Zhichao, XU Qianghua. Transcriptome comparative analysis of liver tissues of three plateau Schizothoracinae fish species[J]. South China Fisheries Science, 2024, 20(3): 92-100. DOI: 10.12131/20230204
    [3]CHEN Zhizhao, ZHU Tao, LEI Caixia, JIANG Peng, DU Jinxing, ZHU Junjie, SONG Hongmei, LI Shengjie. Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates[J]. South China Fisheries Science, 2023, 19(5): 75-85. DOI: 10.12131/20230020
    [4]ZHANG Linbao, TIAN Fei, CHEN Haigang, ZHANG Zhe, YE Guoling, LI Yitong, TANG Haiwei. Comparative transcriptome analysis in livers of female and male marine medaka (Oryzias melastigma)[J]. South China Fisheries Science, 2023, 19(3): 88-97. DOI: 10.12131/20220250
    [5]SONG Ruhao, HU Ruiqin, LI Genfang, ZHANG Zhicong, XU Qianghua. Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology[J]. South China Fisheries Science, 2022, 18(6): 60-68. DOI: 10.12131/20220038
    [6]ZHANG Chenjie, ZHANG Yanliang, GAO Quanxin, PENG Shiming, SHI Zhaohong. Effect of low salinity stress on antioxidant function in liver of juvenile Nibea albiflora[J]. South China Fisheries Science, 2015, 11(4): 59-64. DOI: 10.3969/j.issn.2095-0780.2015.04.009
    [7]WU Dan-hua, WANG Chun-lin, SHAO Yin-wen, JIANG Xia-min. Effects of starvation on fatty acid composition of liver and ovary in Sepiella maindroni[J]. South China Fisheries Science, 2010, 6(2): 46-52. DOI: 10.3969/j.issn.1673-2227.2010.02.008
    [8]LI Jianming, GAN Hui, FENG Guangpeng, HUANG Kai, GONG Zhulin. Correlation between lipid levels of feed and liver morphology characters of juvenile tilapia (Oreochromis niloticus×O. aureus)[J]. South China Fisheries Science, 2008, 4(5): 37-43.
    [9]FENG Jingbin, LI Liudong, JIA Xiaoping. Pharmarcokinetics of florfenicol in tilapia[J]. South China Fisheries Science, 2006, 2(5): 25-29.
    [10]LIN Heizhao, LIU Yongjian, HE Jianguo, ZHENG Wenhui, LI Zhuojia, TIAN Lixia. Effects of starvation on fatty acid composition of muscle and liver in grouper, Epinephelus coioides[J]. South China Fisheries Science, 2006, 2(4): 1-6.

Catalog

    Article views (5502) PDF downloads (3787) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return