GONG Jinbo, SU Tianfeng, XIA Junhong, GONG Shiyuan, JIANG Shigui. Polymorphism study of the mitochondrial DNA D-loop control region sequences from black porgy Acanthopagrus schlegeli, in the costal waters of China[J]. South China Fisheries Science, 2006, 2(4): 24-30.
Citation: GONG Jinbo, SU Tianfeng, XIA Junhong, GONG Shiyuan, JIANG Shigui. Polymorphism study of the mitochondrial DNA D-loop control region sequences from black porgy Acanthopagrus schlegeli, in the costal waters of China[J]. South China Fisheries Science, 2006, 2(4): 24-30.

Polymorphism study of the mitochondrial DNA D-loop control region sequences from black porgy Acanthopagrus schlegeli, in the costal waters of China

More Information
  • Received Date: December 21, 2005
  • Revised Date: April 05, 2006
  • For inquiring into the genteic diversity and genetic structure of black porgy Acanthopagrus schlegeli, We used polymerase chain reaction (PCR) and direct nucleotide sequencing to analyze the 547~549 bp 5′end of the D-loop region from 72 A.schlegeli samples, which captured from Beihai(Guangxi province), Shenzhen(Guangdong province) and Qingdao(Shandong province). The results show that the A, T, G and C mean contents in those fragments were 30.8%, 21.8%, 36.3%, 11.0%, respectively. There were 55 variable nucleotide positions in those gene fragments, which included 38 transition sites and 13 transvertion sites, 1 insert/ transvertion site and 3 deletion/trasvertion. Comparisons of these 72 partial D-loop sequences revealed 51 mitochondrial haplotypes in A.schlegeli, the haplotype rate was 70.8%. Those indicated that there were rich nucleotide variational polymorphism exited in A.schlegeli. Phylogenetic trees of haplotypes were constructed by NJ method. Neither significant genealogical branches nor geographic cluster were found. It showed that mitochondrial DNA highly variable region sequence is unsuitable to be used as a genetic marker for population identification.

  • [1]
    JEAN Chuentan, LEE Sinche, CHEN Chetsung, et al. Variation in mitochondrial DNA sequences of black porgy, Acanthopagrus schlegeli, in the coastal waters of Taiwan[J]. Zool Stud, 1998, 37(1): 22-30. https://www.semanticscholar.org/paper/Variation-in-Mitochondrial-DNA-Sequences-of-Black-Jean-Lee/27451ea0b4e2ab9e2ef072f0ec1c234bed3b2b51
    [2]
    刘焕章. 鱼类线粒体DNA控制区的结构与进化: 以鳑鲏鱼类为例[J]. 自然科学进展, 2002, 12(3): 266-270. doi: 10.3321/j.issn:1002-008X.2002.03.008
    [3]
    ROSEL P E, HAYGOOD M G, PERRIN W F. Phylogenetic relationships among the True Porpoises (Cetacea: Phocoenidae)[J]. Mol Phylogen Evol, 1995, 4(4): 463-474. doi: 10.1006/mpev.1995.1043
    [4]
    ROSEL P E, ROJAS-BRACHO L. Mitochondrial DNA variation in the critically endangered vaquita Phocoena sinus (Norris and MacFarland)[J]. Mar Mammal Sci, 1999, 15(4): 990-1003. doi: 10.1111/j.1748-7692.1999.tb00874.x
    [5]
    BAKER C S, PERRY A, BANNISTER J L, et al. Abundant mitochondrial DNA variation and world-wide population structure in humpback whales[J]. Proc Natl Acad Sci USA, 1993, 90(19): 8239-8243. https://www.jstor.org/stable/2363001
    [6]
    HOELZEL A R, HALLEY J, O'BRIEN S J, et al. Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks[J]. J Heredity, 1993, 84(6): 443-449. doi: 10.1093/oxfordjournals.jhered.a111370
    [7]
    JEAN C T, HUI C F, LEE S C, et al. Variation in mito-chondrial DNA and phylogenetic relationships of fishes of the subfamily Sparinae (Perciformes: Sparidae) in the coastal waters of Taiwan[J]. Zool Stud, 1995, 34(4): 270-280. https://www.semanticscholar.org/paper/Variation-in-Mitochondrial-DNA-and-Phylogenetic-of-Jean-Hui/df9a17ee536d6e81a7deb55040686a6d83a3fcdf
    [8]
    JEAN C T, LEE S C, HUI C F, et al. Phylogenetic relationships among fish of the subfamily Sparinae (Perci-formes: Sparidae) in the coastal waters of Taiwan[J]. J Zool Syst Evol Res, 1995, 33(1): 49-53. doi: 10.1111/j.1439-0469.1995.tb00208.x
    [9]
    SACCONE C, ATTIMONELLI M, SBISA E. Structural elements highly preserved during the evolution of the D-loop containing region in vertebrate mitochondrial DNA[J]. J Mol Evol, 1987, 26(11): 205-211. doi: 10.1007/BF02099853
    [10]
    TZENG C S, HUI C F, SHEN S C, et al. The complete nucleotide sequence of the Crossostoma lacustre mito-chondrial genome: conservation and variations among vertebrates[J]. Nucleic Acids Res, 1992, 20(22): 4853-4858. https://academic.oup.com/nar/article/20/18/4853/995948
    [11]
    YODER A D, CARTMILL M, RUVOLO M et al. Ancient single origin for Malagasy primates[J]. Proc Natl Acad Sci USA, 1996, 93(10): 5122-5126. doi: 10.1073/pnas.93.10.5122
    [12]
    KUMAR S, TAMURA K, JAKOBSEN I B, et al. MEGA2: molecular evolutionary genetics analysis software[J]. Bioinformatics, 2001, 17(12): 1244-1245. doi: 10.1093/bioinformatics/17.12.1244
    [13]
    FU Y X, LI W H. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133(3): 693-709. doi: 10.1093/genetics/133.3.693
    [14]
    DODA J N, WRIGHT C T, CLAYTON D A. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences[J]. Proc Natl Acad Sci USA, 1981, 78(10): 6116-6120. doi: 10.1073/pnas.78.10.6116
    [15]
    SBISA E, TANZARIELLO F, REYES F, et al. Mammalian mitochondrial D-loop regions tructural analysis: identification of new conserved sequences and the functional and evolutionary implications[J]. Gene, 1997, 205(1/2): 125-140. https://www.researchgate.net/publication/223837344_Mammalian_mitochondrial_D-loop_region_structural_analysis_Identification_of_new_conserved_sequences_and_their_functional_and_evolutionary_implications
    [16]
    SACCONE C, ATTIMONELLI M, SBISA E. Structural elements highly preserved during the evolution of the d-loop region invertebrate mitochondrial DNA[J]. J Mol Evol, 1987, 26(3): 205-211. doi: 10.1007/BF02099853
    [17]
    GUO X H, LIU S J, LIU Y. Comparative analysis of the mitochondrial DNA control region in cyprinus with different ploidy level[J]. Aquac, 2003, 224(1/4): 25-38. https://www.sciencedirect.com/science/article/pii/S0044848603001686
    [18]
    张燕, 张鹗, 何舜平. 中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析[J]. 水生生物学报, 2003, 27(5): 463-467. doi: 10.3321/j.issn:1000-3207.2003.05.004
    [19]
    曾青兰, 刘焕章. 大口胭脂鱼线粒体DNA控制区序列的研究[J]. 湖北大学学报: 自然科学版, 2001, 23(3): 261-264. doi: 10.3969/j.issn.1000-2375.2001.03.021
    [20]
    LEE W J, CONROY J, HOWELL W H. Structure and evolution of teleost mitochondrial control regions[J]. J Mol Evol, 1995, 41(1): 54-66. doi: 10.1007/BF00174041
    [21]
    杨慧荣, 江世贵, 周发林, 等. 3个不同地理群体黑鲷遗传变异的RAPD分析[J]. 中国水产科学, 2004, 11(3): 185-189. doi: 10.3321/j.issn:1005-8737.2004.03.002
  • Related Articles

    [1]LI Jiangtao, ZHANG Yanqiu, ZHANG Hong, LIU Chun, QIU Xiaolong, CHEN Ming, FANG Junchao, QIU Xiaotong, LIN Li, LYU Xiaojing. Effects of density stress on swimming behavior and muscle energy metabolism of Micropterus salmoides[J]. South China Fisheries Science, 2024, 20(2): 102-110. DOI: 10.12131/20230176
    [2]WU Haizhu, CHEN Zhaokai, LIN Dongming. Effects of marine environment on fecundity characteristics of female argentine shortfin squids[J]. South China Fisheries Science, 2024, 20(1): 130-140. DOI: 10.12131/20230161
    [3]LIU Yaqiu, LIU Mingdian, LI Xinhui, LI Jie. Comparative analysis of nutritional composition and energy density of muscle in three geographical populations of Megalobrama terminalis[J]. South China Fisheries Science, 2022, 18(4): 163-169. DOI: 10.12131/20210226
    [4]LIAN Jinxin, FENG Yixuan, LIN Dongming. Relative energy accumulation in soma and gonad tissues of female Dosidicus gigas and relation to environmental effects[J]. South China Fisheries Science, 2022, 18(4): 34-43. DOI: 10.12131/20210219
    [5]ZHANG Kai, LI Zhifei, XIE Jun, YU Deguang, WANG Guangjun, GONG Wangbao, YU Ermeng, TIAN Jingjing. Effect of eco-substrates on water quality and energy budget of largemouth bass (Micropterus salmoides) aquaculture system[J]. South China Fisheries Science, 2018, 14(5): 53-59. DOI: 10.3969/j.issn.2095-0780.2018.05.007
    [6]LIU Xujia, HUANG Guoqiang, PENG Yinhui. Effect of different dissolved oxygen levels on growth, energy metabolism and oxidative stress of Mugil cephalus[J]. South China Fisheries Science, 2015, 11(4): 88-94. DOI: 10.3969/j.issn.2095-0780.2015.04.013
    [7]XIAO Yongshuang, MA Daoyuan, XIAO Zhizhong, LIU Qinghua, XU Shihong, LI Jun. Quality assessment of oosperm of turbot (Scophthalmus maximus) based on energy metabolism-related relative enzyme activities[J]. South China Fisheries Science, 2012, 8(2): 15-21. DOI: 10.3969/j.issn.2095-0780.2012.02.003
    [8]LIAO Rui, QU You-jun, GOU Xiao-wei. A review: influence of stocking density on fish welfareⅠ.mortality, growth, feeding and stress response[J]. South China Fisheries Science, 2006, 2(6): 76-80.
    [9]LI Chunhou, QIN Honggui, JIA Xiaoping, TIAN Lixia. The effect of density on energy conversion efficiency of juvenile shrimp Litopenaeus vannamei[J]. South China Fisheries Science, 2006, 2(1): 30-33.
    [10]WANG Xue-hui, DU Fei-yan, QIU Yong-song, LI Chun-hou, HUANG Hong-hui, SUN Dian-rong, JIA Xiao-ping. Study on the ecosystem model of Daya Bay I. A preliminary approach on energy flow model[J]. South China Fisheries Science, 2005, 1(3): 1-8.
  • Cited by

    Periodical cited type(5)

    1. 纪蕾,姜晓东,孙元芹,刘天红,李红艳,李晓,王颖,张帅中. 大豆低聚肽和谷氨酰胺转氨酶对热煮后虹鳟鱼肉品质及蛋白质理化特性的影响. 中国农业科技导报(中英文). 2025(04): 149-156 .
    2. 袁毅,姜启兴,高沛,杨方,余达威,许艳顺,夏文水. 即食鱼胶产品的杀菌工艺. 水产学报. 2024(02): 180-188 .
    3. 张熙晨,李静鹏,邓夏彬阳,许安芸,王明科,邓力. 蒸制表面传热系数测定及其对品质动力学的影响. 食品与发酵科技. 2023(01): 73-82 .
    4. 闫寒,崔震昆,宋慕波,范翠翠,刘英健. 蓝光对三文鱼的杀菌作用及品质影响研究. 食品安全质量检测学报. 2023(09): 146-152 .
    5. 杨明畅,马俪珍,李来好,杨贤庆,陈胜军,魏涯,王悦齐,李春生,赵永强. 蛋白质免疫印迹技术在水产品中的应用. 食品安全质量检测学报. 2021(20): 7914-7919 .

    Other cited types(1)

Catalog

    Article views (5523) PDF downloads (3787) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return