ZHANG Kai, LI Zhifei, XIE Jun, YU Deguang, WANG Guangjun, GONG Wangbao, YU Ermeng, TIAN Jingjing. Effect of eco-substrates on water quality and energy budget of largemouth bass (Micropterus salmoides) aquaculture system[J]. South China Fisheries Science, 2018, 14(5): 53-59. DOI: 10.3969/j.issn.2095-0780.2018.05.007
Citation: ZHANG Kai, LI Zhifei, XIE Jun, YU Deguang, WANG Guangjun, GONG Wangbao, YU Ermeng, TIAN Jingjing. Effect of eco-substrates on water quality and energy budget of largemouth bass (Micropterus salmoides) aquaculture system[J]. South China Fisheries Science, 2018, 14(5): 53-59. DOI: 10.3969/j.issn.2095-0780.2018.05.007

Effect of eco-substrates on water quality and energy budget of largemouth bass (Micropterus salmoides) aquaculture system

More Information
  • Received Date: April 25, 2018
  • Revised Date: June 02, 2018
  • Available Online: December 04, 2018
  • To find out the rule of the energy flowing of aquaculture ponds with eco-substrate, we carried out an experiment (the pond with eco-substrates as the treatment group and the pond without eco-substrate as the control group) and studied the effect of eco-substrates on the environment and energy budget of largemouth bass (Micropterus salmoides) aquaculture system. The results show that the eco-substrates could reduce the ammonia nitrogen, nitrate nitrogen, total nitrogen and total phosphorus in the water significantly (P<0.05), but there was no effect on the nitrite nitrogen, soluble reactive phosphate in the water and total nitrogen, total phosphorus in the sediments (P>0.05). In the study, forage fish was the main source of input energy in both two groups, which accounted for 53.26% and 55.02% of the total input energy, respectively. The primary production of phytoplankton was also the important source of input energy, accounting for 44.22% and 45.92% of the total input energy, respectively. The major output of energy was the respiration of plankton followed by the harvest of cultured animals, accounting for 56.68%, 60.01% and 28.78%, 31.99%, respectively. The treatment group had higher net biological output energy, photosynthetic conversion efficiency, feed energy conversion efficiency and total energy conversion efficiency (P<0.05), but lower feed energy consumption per unit of net yield and total energy consumption per unit of net yield (P<0.05). Therefore, the eco-substrates could improve the pond environment, increase the production and enhance the energy utilization efficiency effectively.
  • [1]
    徐磊, 白俊杰, 李胜杰. 大口黑鲈生长性状相关标记的聚合效果分析[J]. 中国水产科学, 2014, 21(1): 53-58.
    [2]
    郁二蒙, 张振男, 夏耘, 等. 摄食不同饵料的大口黑鲈肠道菌群分析[J]. 水产学报, 2015, 39(1): 118-126.
    [3]
    白俊杰, 李胜杰. 我国大口黑鲈产业现状分析与发展对策[J]. 中国渔业经济, 2013, 31(5): 104-108.
    [4]
    HAQUE M R, ISLAM M A, RAHMAN M, et al. Effects of C/N ratio and periphyton substrates on pond ecology and production performance in giant freshwater prawn Macrobrachium rosenbergii (De Man, 1879) and tilapia Oreochromis niloticus (Linnaeus, 1758) polyculture system[J]. Aquacult Res, 2015, 46(5): 1139-1155.
    [5]
    PINHO S M, BROL J, de ALMEIDA E J, et al. Effect of stocking density and vertical substrate addition on growth performance and health status of fat snook Centropomus parallelus[J]. Aquaculture, 2016, 457: 73-78.
    [6]
    宋协法, 薛松松, 陈义明. 纳米生态基对水产养殖污水的处理效果[J]. 环境工程学报, 2012, 6(7): 2231-2236.
    [7]
    夏耘, 王一飞, 郁二蒙, 等. 生态基对草鱼生长性能、肠道及水体微生物的影响[J]. 水产学报, 2014, 38(9): 1410-1420.
    [8]
    李志斐, 王广军, 谢骏, 等. 草鱼养殖池塘生物膜固着微生物群落碳代谢Biolog分析[J]. 水产学报, 2014, 38(12): 1985-1995.
    [9]
    孙儒泳. 基础生态学[M]. 北京: 高等教育出版社, 2002: 328-342.
    [10]
    莫宝霖, 秦传新, 陈丕茂, 等. 基于Ecopath模型的大亚湾海域生态系统结构与功能初步分析[J]. 南方水产科学, 2017, 13(3): 9-19.
    [11]
    包杰, 田相利, 董双林, 等. 对虾、青蛤和江蓠混养的能量收支及转化效率研究[J]. 中国海洋大学学报(自然科学版), 2006, 36(z1): 27-32.
    [12]
    BALASUBRAMANIAN S, PAPPATHI R, RAJ S P. An energy budget and efficiency of sewage-fed fish ponds[J]. Bioresource Techn, 1995, 52: 145-150.
    [13]
    周一兵, 刘亚军. 虾池生态系能量收支和流动的初步分析[J]. 生态学报, 2000, 20(3): 474-481.
    [14]
    翟雪梅, 张志南. 虾池生态系能流结构分析[J]. 青岛海洋大学学报, 1998, 28(2): 108-115.
    [15]
    游奎. 对虾工程化养殖系统重要元素及能量收支[D]. 青岛: 中国科学院海洋研究所, 2005: 97-100.
    [16]
    TU X H, XIAO B D, XIONG J, et al. A simple miniaturised photometrical method for rapid determination of nitrate and nitrite in freshwater[J]. Talanta, 2010, 82(3): 976-983.
    [17]
    LASKOV C, HERZOG C, LEWANDOWSKI J. Miniaturized photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron, and sulfate in pore water of freshwater sediments[J]. Limnol Oceanogra: Methods, 2007, 5(1): 63-71.
    [18]
    王骥. 浮游植物的初级生产力与黑白瓶测氧法[J]. 淡水渔业, 1980, 3(3): 26-30.
    [19]
    刘思俭, 曾淑芳. 江蓠在不同水层中的光合作用与生长[J]. 湛江水产学院学报, 1980, 1(2): 23-28.
    [20]
    ZHANG K, TIAN X L, DONG S L, et al. An experimental study on the budget of organic carbon in polyculture systems of swimming crab with white shrimp and short-necked clam[J]. Aquaculture, 2016, 451: 58-64.
    [21]
    COLLOS Y, VAQUER A, BIBENT B, et al. Response of coastal phytoplankton to ammonium and nitrate pulses: seasonal variations of nitrogen uptake and regeneration[J]. Aquat Ecol, 2003, 37(3): 227-236.
    [22]
    SCHVEITZER R, ARANTES R, BALOI M F, et al. Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: effects on microbial activity, water quality and production rates[J]. Aquacult Eng, 2013, 54(3): 93-103.
    [23]
    LEZAMA-CERVANTES C, PANIAGUA-MICHEL J. Effects of constructed microbial mats on water quality and performance of Litopenaeus vannamei post-larvae[J]. Aquacult Eng, 2010, 42(2): 75-81.
    [24]
    朱德锐, 贲亚琍, 韩睿, 等. 聚磷菌生物除磷机理研究进展[J]. 环境科学与技术, 2008, 31(5): 62-65.
    [25]
    ASADUZZAMAN M, WAHAB M A, VERDEGEM M, et al. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds[J]. Aquaculture, 2008, 280(1/2/3/4): 117-123.
    [26]
    KUMAR V S, PANDEY P K, ANAND T, et al. Effect of periphyton (aquamat) on water quality, nitrogen budget, microbial ecology, and growth parameters of Litopenaeus vannamei in a semi-intensive culture system[J]. Aquaculture, 2017, 479: 240-249.
    [27]
    HU X J, LI Z J, CAO Y C, et al. Isolation and identification of a phosphate-solubilizing bacterium Pantoea stewartii subsp. stewartii g6, and effects of temperature, salinity, and pH on its growth under indoor culture conditions[J]. Aquacult Int, 2010, 18(6): 1079-1091.
    [28]
    宋协法, 马真, 万荣. 纳米生态基在凡纳滨对虾养殖中的应用研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(10): 24-28.
    [29]
    宋颀, 田相利, 董双林, 等. 草鱼混养生态系统能量收支的研究[J]. 中国海洋大学学报(自然科学版), 2011, 41(10): 45-51.
    [30]
    奉杰, 田相利, 董双林, 等. 不同三疣梭子蟹混养系统能量收支的研究[J]. 中国海洋大学学报(自然科学版), 2015, 45(3): 39-47.
    [31]
    孙刚, 盛连喜, 冯江, 等. 长春南湖生态系统能量收支的研究[J]. 生态学杂志, 2000, 19(2): 8-12.
    [32]
    杨富亿. 三江平原沼泽地主养鲤鱼塘能量转换效率研究[J]. 湖泊科学, 1995, 7(3): 263-270.
    [33]
    李吉方, 董双林, 文良印, 等. 盐碱地池塘不同养殖模式的能量利用比较[J]. 中国水产科学, 2003, 10(2): 143-147.
    [34]
    吴乃薇, 边文冀, 姚宏禄. 主养青鱼池塘生态系统能量转换率的研究[J]. 应用生态学报, 1992, 3(4): 333-338.
    [35]
    ANAND P S, KOHLI M P, ROY S D, et al. Effect of dietary supplementation of periphyton on growth, immune response and metabolic enzyme activities in Penaeus monodon[J]. Aquacult Res, 2015, 46(9): 2277-2288.
    [36]
    HUANG Z T, WAN R, SONG X F, et al. Assessment of AquaMats for removing ammonia in intensive commercial Pacific white shrimp Litopenaeus vannamei aquaculture systems[J]. Aquacult Int, 2013, 21(6): 1333-1342.
    [37]
    刘晃, 管崇武, 倪琦, 等. 生物膜法SBR (BSBR)在循环养殖水处理中影响因素分析[J]. 南方水产, 2008, 4(4): 55-59.
    [38]
    陈亮亮, 董宏标, 张家松, 等. 6种改性剂对生物膜附着基质亲水性及其虾池挂膜效果的影响[J]. 南方水产科学, 2014, 10(2): 42-47.

Catalog

    Recommendations
    Fish community structure and environmental impact factors in three gorges reservoir during summer and autumn
    WU Fan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Assessment of health conditions of main rivers in renhuai city based on benthic-integrated biotic index (b-ibi)
    HE Haoyu et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Parametric modeling and application of gravity deepwater cage system
    WAN Chengyu et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Quality analysis ofaristichthys nobilismuscle cultured in rice fields, ponds and reservoirs
    GAO Hujun et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
    Effects of sterilization conditions on lipid and flavor quality of scomberomorus niphonius
    WANG Shanyu et al., PROGRESS IN FISHERY SCIENCES, 2025
    Biochar-enhanced bioremediation of eutrophic waters impacted by algal blooms
    Vasseghian, Yasser et al., JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024
    Effects of salinity on anoxic-oxic system performance, microbial community dynamics and co-occurrence network during treating wastewater
    Chen, Hui et al., CHEMICAL ENGINEERING JOURNAL, 2023
    Environmental impact of wastewater treatment plant using life-cycle assessment– case study in jordan
    WATER CONSERVATION AND MANAGEMENT, 2024
    Improving commercial-scale alkaline water electrolysis systems for fluctuating renewable energy: unsteady-state thermodynamic analysis and optimization
    APPLIED ENERGY, 2025
    Powered by
    Article views (3062) PDF downloads (85) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return