Citation: | LI Jiangtao, ZHANG Yanqiu, ZHANG Hong, LIU Chun, QIU Xiaolong, CHEN Ming, FANG Junchao, QIU Xiaotong, LIN Li, LYU Xiaojing. Effects of density stress on swimming behavior and muscle energy metabolism of Micropterus salmoides[J]. South China Fisheries Science, 2024, 20(2): 102-110. DOI: 10.12131/20230176 |
Excessive aquaculture density may inhibit fish growth. To investigate the behavioral and physiological responses of largemouth bass (Micropterus salmoides) to density stress, we conducted an experiment with three densities [Low (90 individuals·m−3), medium (110 individuals·m−3) and high (130 individuals·m−3)]. Then we determined the swimming behavior, enzyme activity and gene relative expression of energy metabolism in red and white muscles of M. salmoides after one week of density stress. The results show that the swimming frequency, tail-beat frequency and swimming speeds increased with density (P<0.05). Density did not significantly affect the gene expression and activities of anaerobic metabolic enzymes such as hexokinase (HK), phosphofructokinase (PFK) and lactate dehydrogenase (LDH) in red muscles (P>0.05). When the density increased from low to medium level, the gene relative expression of aerobic metabolism enzymes such as pyruvate dehydrogenase (PDH), citrate synthase (CS) and malate dehydrogenase (MDH) in red muscles increased significantly (P<0.05), so did the activities of these enzymes (P<0.05). When the density increased from low to high level, the gene relative expression levels of aerobic metabolism enzymes such as PDH, CS and MDH in red muscles, as well as anaerobic metabolism enzymes such as HK, PFK and LDH in white muscles increased significantly (P<0.05), so did the activities of these enzymes (P<0.05). It is indicated that density affects the energy metabolism of muscles by altering the swimming behavior of M. salmoides. Medium density mainly relies on aerobic metabolism of the red muscle for energy supply, while high density mainly relies on aerobic metabolism of the red muscle and anaerobic metabolism of the white muscle to participate in energy supply.
[1] |
曲蕊, 刘晃, 刘俊文, 等. 大口黑鲈摄食过程的声信号特征及养殖密度的影响[J]. 渔业现代化, 2021, 48(6): 55-63.
|
[2] |
OUFIERO C E, GARLAND JR T. Repeatability and correlation of swimming performances and size over varying time-scales in the guppy (Poecilia reticulata)[J]. Funct Ecol, 2009, 23(5): 969-978. doi: 10.1111/j.1365-2435.2009.01571.x
|
[3] |
PALSTRA A P, PLANAS J V. Fish under exercise[J]. Fish Physiol Biochem, 2011, 37: 259-272. doi: 10.1007/s10695-011-9505-0
|
[4] |
LI J T, LI W T, ZHANG X M. Effects of dissolved oxygen, starvation, temperature, and salinity on the locomotive ability of juvenile Chinese shrimp Fenneropenaeus chinensis[J]. Ethol Ecol Evol, 2019, 31(2): 155-172. doi: 10.1080/03949370.2018.1526215
|
[5] |
PETERSON R H, HARMON P. Swimming ability of pre-feeding striped bass larvae[J]. Aquac Int, 2001, 9(5): 361-366. doi: 10.1023/A:1020533316106
|
[6] |
YANASE K, EAYRS S, ARIMOTO T. Influence of water temperature and fish length on the maximum swimming speed of sand flathead, Platycephalus bassensis: implications for trawl selectivity[J]. Fish Res, 2007, 84(2): 180-188. doi: 10.1016/j.fishres.2006.10.015
|
[7] |
李江涛, 林小涛, 周晨辉, 等. 饥饿对食蚊鱼和唐鱼幼鱼能量物质消耗及游泳能力的影响[J]. 应用生态学报, 2016, 27(1): 282-290.
|
[8] |
LI J T, LI W T, ZHANG X M, et al. Physiological and behavioral responses of different modes of locomotion in the whiteleg shrimp Litopenaeus vannamei (Boone, 1931) (Caridea: Penaeidae)[J]. J Crustacean Biol, 2018, 38(1): 79-90. doi: 10.1093/jcbiol/rux107
|
[9] |
TORRES J J, GRIGSBY M D, CLARKE M E. Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase[J]. J Exp Biol, 2012, 215(11): 1905-1914. doi: 10.1242/jeb.060236
|
[10] |
倪金金, 王裕玉, 徐钢春, 等. 养殖密度对池塘循环水养殖大口黑鲈生长、生理指标和 GH、IGF-I 基因表达的影响[J]. 大连海洋大学学报, 2020, 35(6): 805-813.
|
[11] |
JØRGENSEN E H, CHRISTIANSEN J S, JOBLING M. Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salvelinus alpinus)[J]. Aquaculture, 1993, 110(2): 191-204. doi: 10.1016/0044-8486(93)90272-Z
|
[12] |
OYARZÚN R, PAREDES R, SARAVIA J, et al. Stocking density affects the growth performance, intermediary metabolism, osmoregulation, and response to stress in Patagonian blennie Eleginops maclovinus[J]. Aquaculture, 2020, 515: 734565. doi: 10.1016/j.aquaculture.2019.734565
|
[13] |
de BARROS I B A, VILLACORTA-CORREA M A, CARVALHO T B. Stocking density and water temperature as modulators of aggressiveness, survival and zootechnical performance in matrinxã larvae, Brycon amazonicus[J]. Aquaculture, 2019, 502: 378-383. doi: 10.1016/j.aquaculture.2018.12.070
|
[14] |
GAO Y, HE Z L, VECTOR H, et al. Effect of stocking density on growth, oxidative stress and HSP 70 of Pacific white shrimp Litopenaeus vannamei[J]. Turk J Fish Aquat Sci, 2017, 17(5): 877-884.
|
[15] |
SHOURBELA R M, KHATAB S A, HASSAN M M, et al. The effect of stocking density and carbon sources on the oxidative status, and nonspecific immunity of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions[J]. Animals, 2021, 11(1): 184. doi: 10.3390/ani11010184
|
[16] |
ARIFIN O Z, PRAKOSO V A, SUBAGJA J, et al. Effects of stocking density on survival, food intake and growth of giant gourami (Osphronemus goramy) larvae reared in a recirculating aquaculture system[J]. Aquaculture, 2019, 509: 159-166. doi: 10.1016/j.aquaculture.2019.05.010
|
[17] |
KRISTIANSEN T S, FERNÖ A, HOLM J C, et al. Swimming behaviour as an indicator of low growth rate and impaired welfare in Atlantic halibut (Hippoglossus hippoglossus L.) reared at three stocking densities[J]. Aquaculture, 2004, 230(1/2/3/4): 137-151.
|
[18] |
BROWM G E, BROWN J A, SRIVASTAVA R K. The effect of stocking density on the behaviour of Arctic charr (Salvelinus alpinus L. )[J]. J Fish Biol, 1992, 41(6): 955-963. doi: 10.1111/j.1095-8649.1992.tb02722.x
|
[19] |
WARD D, FØRE M, HOWELL W H, et al. The influence of stocking density on the swimming behavior of adult Atlantic cod, Gadus morhua, in a near shore net pen[J]. J World Aquacult Soc, 2012, 43(5): 621-634. doi: 10.1111/j.1749-7345.2012.00593.x
|
[20] |
MIZORY F A, HUSSEIN N J, HUSSEIN N S A A S R. Effect of different stocking densities on behavior of common carp (Cyprinus carpio) in Duhok province, Kurdistan region, Iraq[J]. Int J Sci Res Biol Sci, 2020, 7(4): 1-6.
|
[21] |
CARBONARA P, ALFONSO S, ZUPA W, et al. Behavioral and physiological responses to stocking density in sea bream (Sparus aurata): do coping styles matter?[J]. Physiol Behav, 2019, 212: 112698. doi: 10.1016/j.physbeh.2019.112698
|
[22] |
白俊杰, 李胜杰. 我国大口黑鲈产业现状分析与发展对策[J]. 中国渔业经济, 2013, 31(5): 104-108.
|
[23] |
HARIMANA Y, TANG X, XU P, et al. Effect of long-term moderate exercise on muscle cellularity and texture, antioxidant activities, tissue composition, freshness indicators and flavor characteristics in largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2019, 510(5): 100-108.
|
[24] |
王裕玉, 徐跑, 聂志娟, 等. 池塘工程化循环水养殖模式下养殖密度对大口黑鲈生长性能和生理指标的影响[J]. 淡水渔业, 2019, 49(3): 90-95.
|
[25] |
WANG Y Y, NI J J, NIE Z J, et al. Effects of stocking density on growth, serum parameters, antioxidant status, liver and intestine histology and gene expression of largemouth bass (Micropterus salmoides) farmed in the in-pond raceway system[J]. Aquac Res, 2020, 51(12): 5228-5240. doi: 10.1111/are.14862
|
[26] |
TIDWELL J H, WEBSTER C D, COYLE S D, et al. Effect of stocking density on growth and water quality for largemouth bass Micropterus salmoides growout in ponds[J]. J World Aquacul Soc, 1998, 29(1): 79-83. doi: 10.1111/j.1749-7345.1998.tb00302.x
|
[27] |
WANG Y Y, NI J J, NIE Z J, et al. Effect of stocking density on growth, serum biochemical parameters, digestive enzymes activity and antioxidant status of largemouth bass, Micropterus salmoides[J]. Pak J Zool, 2019, 51: 1509-1517.
|
[28] |
NI M, LIU M, LOU J F, et al. Stocking density alters growth performance, serum biochemistry, digestive enzymes, immune response, and muscle quality of largemouth bass (Micropterus salmoides) in in-pond raceway system[J]. Fish Physiol Biochem, 2021, 47: 1243-1255. doi: 10.1007/s10695-021-00948-3
|
[29] |
JIA R, WANG L, HOU Y R, et al. Effects of stocking density on the growth performance, physiological parameters, redox status and lipid metabolism of Micropterus salmoides in integrated rice-fish farming systems[J]. Antioxidants, 2022, 11(7): 1215. doi: 10.3390/antiox11071215
|
[30] |
CARVALHO T B, SOUZA E C M, PINHEIRO-DA-SILVA J, et al. Effect of body size heterogeneity on the aggressive behavior of larvae of matrinxã, Brycon amazonicus (Characiformes, Bryconidae)[J]. Acta Amazon, 2018, 48: 304-310. doi: 10.1590/1809-4392201800541
|
[31] |
AHVENHARJU T, RUOHONEN K. Agonistic behaviour of signal crayfish (Pacifastacus leniusculus Dana) in different social environments: effect of size heterogeneity on growth and food intake[J]. Aquaculture, 2007, 271(1/2/3/4): 307-318.
|
[32] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
|
[33] |
ZHANG W, LIU K, TAN B P, et al. Transcriptome, enzyme activity and histopathology analysis reveal the effects of dietary carbohydrate on glycometabolism in juvenile largemouth bass, Micropterus salmoides[J]. Aquaculture, 2019, 504: 39-51. doi: 10.1016/j.aquaculture.2019.01.030
|
[34] |
YANG S, WU H, HE K, et al. Response of AMP-activated protein kinase and lactate metabolism of largemouth bass (Micropterus salmoides) under acute hypoxic stress[J]. Sci Total Environ, 2019, 666: 1071-1079. doi: 10.1016/j.scitotenv.2019.02.236
|
[35] |
YANG W W, WU J J, SONG R, et al. Effects of dietary soybean lecithin on growth performances, body composition, serum biochemical parameters, digestive and metabolic abilities in largemouth bass Micropterus salmoides[J]. Aquac Rep, 2023, 29: 101528. doi: 10.1016/j.aqrep.2023.101528
|
[36] |
张廷军, 杨振才, 孙儒泳. 鱼类对高密度环境的适应[J]. 水产科技情报, 1998, 25(3): 110-113.
|
[37] |
刘宝良, 雷霁霖, 贾睿, 等. 养殖密度对鱼类福利影响研究进展[J]. 中国工程科学, 2014, 16(9): 100-105.
|
[38] |
胡应高. 鱼类的应激反应[J]. 淡水渔业, 2004, 34(4): 61-64.
|
[39] |
MCFARLANE W J, CUBITT K F, WILLIAMS H, et al. Can feeding status and stress level be assessed by analyzing patterns of muscle activity in free swimming rainbow trout (Oncorhynchus mykiss Walbaum)?[J]. Aquaculture, 2004, 239(1/2/3/4): 467-484.
|
[40] |
ANRAS M L B, LAGARDÉRE J P. Measuring cultured fish swimming behaviour: first results on rainbow trout using acoustic telemetry in tanks[J]. Aquaculture, 2004, 240(1/2/3/4): 175-186.
|
[41] |
张建明, 郭柏福, 高勇. 中华鲟幼鱼对慢性拥挤胁迫的生长、摄食及行为反应[J]. 中国水产科学, 2013, 20(3): 592-598.
|
[42] |
COOKE S J, CHANDROO K P, BEDDOW T A, et al. Swimming activity and energetic expenditure of captive rainbow trout Oncorhynchus mykiss (Walbaum) estimated by electromyogram telemetry[J]. Aquac Res, 2000, 31(6): 495-505. doi: 10.1046/j.1365-2109.2000.00470.x
|
[43] |
于赫男. 环境胁迫对罗氏沼虾和凡纳滨对虾行为、生长及生理活动的影响[D]. 广州: 暨南大学, 2007: 49-66.
|
[44] |
衣萌萌, 于赫男, 林小涛, 等. 密度胁迫下凡纳滨对虾的行为与生理变化[J]. 暨南大学学报 (自然科学与医学版), 2012, 33(1): 81-86, 110.
|
[45] |
VIJAYAN M M, BALLANTYNE J S, LEATHERLAND J F. High stocking density alters the energy metabolism of brook charr, Salvelinus fontinalis[J]. Aquaculture, 1990, 88(3/4): 371-381.
|
[46] |
ZHU Z M, SONG B L, LIN X T, et al. Effect of sustained training on glycolysis and fatty acids oxidation in swimming muscles and liver in juvenile tinfoil barb Barbonymus schwanenfeldii (Bleeker, 1854)[J]. Fish Physiol Biochem, 2016, 42: 1807-1817. doi: 10.1007/s10695-016-0259-6
|
[47] |
DAVISON W. The effects of exercise training on teleost fish, a review of recent literature[J]. Comp Biochem Phys A, 1997, 117(1): 67-75. doi: 10.1016/S0300-9629(96)00284-8
|
[48] |
TSENG Y C, HWANG P P. Some insights into energy metabolism for osmoregulation in fish[J]. Comp Biochem Phys C, 2008, 148(4): 419-429.
|
[49] |
程佳佳, 李吉方, 温海深, 等. 养殖密度对杂交鲟幼鱼生长、肌肉组分和血液生理生化指标的影响[J]. 中国水产科学, 2015, 22(3): 433-441.
|
[50] |
LIU Y, LIU H B, WU W H, et al. Effects of stocking density on growth performance and metabolism of juvenile Lenok (Brachymystax lenok)[J]. Aquaculture, 2019, 504: 107-113. doi: 10.1016/j.aquaculture.2019.01.058
|
[51] |
GAO X L, LI X, SHI C, et al. Effects of stocking density on growth, metabolism, and energy budget of Haliotis discus hannai Ino[J]. Aquaculture, 2018, 483: 84-95. doi: 10.1016/j.aquaculture.2017.09.045
|
[52] |
SCOTT-THOMAS D A F, BALLANTYNE J S, LEATHERLAND J F. Interactive effects of high stocking density and triiodothyronine-administration on aspects of the in vivo intermediary metabolism and in vitro hepatic response to catecholamine and pancreatic hormone stimulation in brook charr, Salvelinus fontinalis[J]. J Exp Zool, 1992, 263(1): 68-82. doi: 10.1002/jez.1402630108
|
[53] |
何平国, WARDLE C S. 鱼类游泳运动的研究I. 三种海洋鱼类游泳的运动学特征[J]. 青岛海洋大学学报, 1989, 19(2): 111-118.
|
[54] |
李江涛, 邱小龙, 黄菲菲, 等. 运动强度对罗氏沼虾运动行为和能量代谢的影响[J]. 水产学报, 2023, 47(4): 100-112.
|
[55] |
李江涛, 邱小龙, 邱晓桐, 等. 盐度对罗氏沼虾能量代谢和运动能力的影响[J]. 中国水产科学, 2021, 28(10): 1291-1302.
|
[56] |
LAGE L P A, PLAGNES-JUAN E, PUTRINO S M, et al. Ontogenesis of metabolic gene expression in whiteleg shrimp (Litopenaeus vannamei): new molecular tools for programming in the future[J]. Aquaculture, 2017, 479: 142-149. doi: 10.1016/j.aquaculture.2017.05.030
|
1. |
王大伟,邢盈,蒋成宇,胡淼,赵金良. 放养密度对鳜幼鱼HPI轴激素、应激酶活力及呼吸频率的影响. 淡水渔业. 2025(02): 26-32 .
![]() |