Citation: | WU Haizhu, CHEN Zhaokai, LIN Dongming. Effects of marine environment on fecundity characteristics of female argentine shortfin squids[J]. South China Fisheries Science, 2024, 20(1): 130-140. DOI: 10.12131/20230161 |
To obtain a comprehensive understanding of the fecundity characteristics of Argentine shortfin squids (Illex argentinus), we took the mature female individuals of I. argentinus from the southwestern Atlantic Ocean in 2021 as samples, and used a mixed effects model to analyze the relationship between the fecundity characteristics and the environmental factors in their habitat. The results show that the average effective fecundity of mature females was (67 061.72±24 147.00) oocytes, with a maximum egg diameter of 1.89 mm and a peak energy density of 26.21 kJ·g−1. The effective fecundity demonstrated no significant variation across the sampling months, while notable disparities were observed in the oviduct egg size and energy density. The chlorophyll a concentration emerged as a key oceanic determinant influencing the effective fecundity, with the fecundity being comparatively substantial at concentration of 0.40~0.45 mg·m−3. Sea surface temperature, chlorophyll a concentration and sea surface height significantly influenced the oviduct egg size and energy density. The research suggests that environmental factors within the marine habitat have a significant influence on the effective fecundity, oviduct egg size and energy density of female I. argentinus. The allocation of reproductive energy by female squids is an adaptive process in response to environmental selection within their habitat.
[1] |
宣思鹏, 陈新军, 林东明, 等. 西南大西洋阿根廷滑柔鱼雄性个体的有效繁殖力特性研究[J]. 水生生物学报, 2018, 42(4): 800-810.
|
[2] |
林东明, 宣思鹏, 陈新军. 头足类鞘亚纲繁殖力研究进展[J]. 海洋渔业, 2021, 43(1): 112-128. doi: 10.13233/j.cnki.mar.fish.2021.01.012
|
[3] |
李培伦, 刘伟, 王继隆, 等. 黑龙江乌苏里白鲑的个体繁殖力[J]. 中国水产科学, 2015, 22(6): 1234-1242.
|
[4] |
陈新军. 渔业资源与渔场学[M]. 2版. 北京: 海洋出版社, 2014: 26-78.
|
[5] |
FAO. The state of world fisheries and aquaculture 2022. Towards blue transformation[M]. Rome: FAO, 2022: 46-59.
|
[6] |
BOYLE P, RODHOUSE P. Cephalopods: ecology and fisheries[M]. Oxford: Blackwell Science Ltd. , 2005: 80-160.
|
[7] |
SCHWARZ R, PEREZ J A A. Growth model identification of short-finned squid Illex argentinus (Cephalopoda: Ommastrephidae) off southern Brazil using statoliths[J]. Fish Res, 2010, 106(2): 177-184. doi: 10.1016/j.fishres.2010.06.008
|
[8] |
VILLEGAS-RÍOS D, ALONSO-FERNÁNDEZ A, DOMÍNGUEZ-PETIT R, et al. Energy allocation and reproductive investment in a temperate protogynous hermaphrodite, the ballan wrasse Labrus bergylta[J]. J Sea Res, 2014, 86: 76-85. doi: 10.1016/j.seares.2013.11.010
|
[9] |
RODHOUSE P G K, ARKHIPKIN A I, LAPTIKHOVSKY V, et al. Illex argentinus, Argentine shortfin squid[M]//ROSA R, PIERCE G, O'DOR R. Advances in squid biology, ecology and fisheries. Part II: oegopsid squids. New York: Nova Science Publishers, 2013: 109-148.
|
[10] |
SCHWARZ R, PEREZ J A A. Age structure and life cycles of the Argentine shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) in southern Brazil[J]. J Mar Biolog Assoc UK, 2013, 93(2): 557-565. doi: 10.1017/S0025315412000331
|
[11] |
BRUNETTI N E, IVANOVIC M, ROSSI G, et al. Fishery biology and life history of Illex argentinus[G]. Contributed papers to International Symposium on Large Pelagic Squids, 1998: 217-231.
|
[12] |
CRESPI-ABRIL A C, BARÓN P J. Revision of the population structuring of Illex argentinus (Castellanos, 1960) and a new interpretation based on modelling the spatio-temporal environmental suitability for spawning and nursery[J]. Fish Oceanogr, 2012, 21(2/3): 199-214.
|
[13] |
LAPTIKHOVSKY V V, NIGMATULLIN C M. Egg size, fecundity, and spawning in females of the genus Illex (Cephalopoda: Ommastrephidae)[J]. ICES J Mar Sci, 1993, 50(4): 393-403. doi: 10.1006/jmsc.1993.1044
|
[14] |
LIN D M, CHEN X J, CHEN Y, et al. Sex-specific reproductive investment of summer spawners of Illex argentinus in the southwest Atlantic[J]. Invertebr Biol, 2015, 134(3): 203-213. doi: 10.1111/ivb.12088
|
[15] |
LIN D M, HAN F, XUAN S P, et al. Fatty acid composition and the evidence for mixed income-capital breeding in female Argentinean short-fin squid Illex argentinus[J]. Mar Biol, 2019, 166(7): 1-13.
|
[16] |
ZANG N, LIN D M, PUNT A E, et al. Nutrient allocation to eggs in female Argentinus shortfin squid, Illex argentinus using fatty acids as nutrient indicator[J]. Can J Zool, 2023, 101(9): 709-719. doi: 10.1139/cjz-2023-0001
|
[17] |
SACAU M, PIERCE G J, WANG J J, et al. The spatio-temporal pattern of Argentine shortfin squid Illex argentinus abundance in the southwest Atlantic[J]. Aquat Living Resour, 2005, 18(4): 361-372. doi: 10.1051/alr:2005039
|
[18] |
臧娜, 宋维, 林东明. 阿根廷滑柔鱼雌性个体生殖能量积累及环境效应关系[J]. 上海海洋大学学报, 2022, 31(3): 631-641.
|
[19] |
BARNECHE D R, ROBERTSON D R, WHITE C R, et al. Fish reproductive-energy output increases disproportionately with body size[J]. Science, 2018, 360(6389): 642-645. doi: 10.1126/science.aao6868
|
[20] |
林东明, 陈新军, 方舟. 西南大西洋阿根廷滑柔鱼夏季产卵种群繁殖生物学的初步研究[J]. 水产学报, 2014, 38(6): 843-852.
|
[21] |
林东明, 方学燕, 陈新军. 阿根廷滑柔鱼夏季产卵种群繁殖力及其卵母细胞的生长模式[J]. 海洋渔业, 2015, 37(5): 389-398. doi: 10.3969/j.issn.1004-2490.2015.05.001
|
[22] |
LIN D M, CHEN X J, CHEN Y, et al. Ovarian development in Argentinean shortfin squid Illex argentinus: group-synchrony for corroboration of intermittent spawning strategy[J]. Hydrobiologia, 2017, 795(1): 327-339. doi: 10.1007/s10750-017-3154-y
|
[23] |
MELO Y C, SAUER W H H. Confirmation of serial spawning in the chokka squid Loligo vulgaris reynaudii off the coast of South Africa[J]. Mar Biol, 1999, 135(2): 307-313. doi: 10.1007/s002270050628
|
[24] |
HERNÁNDEZ-MUÑOZ A T, RODRÍGUEZ-JARAMILLO C, MEJÍA-REBOLLO A, et al. Reproductive strategy in jumbo squid Dosidicus gigas (D'Orbigny, 1835): a new perspective[J]. Fish Res, 2016, 173(2): 145-150.
|
[25] |
THE R CORE TEAM. R: a language and environment for statistical computing, version 4.3.0[CP]. [2023-08-01]. https://www.R-project.org/.
|
[26] |
WITTHAMES P R, THORSEN A, MURUA H, et al. Advances in methods for determining fecundity: application of the new methods to some marine fishes[J]. Fish Bull, 2009, 107(2): 148-164.
|
[27] |
张健, 杨培民, 胡宗云, 等. 大洋河刀鲚繁殖生物学特性[J]. 淡水渔业, 2021, 51(6): 3-11.
|
[28] |
KELLER S, VALLS M, HIDALGO M, et al. Influence of environmental parameters on the life-history and population dynamics of cuttlefish Sepia officinalis in the western Mediterranean[J]. Estuar Coast Shelf Sci, 2014, 145: 31-40. doi: 10.1016/j.ecss.2014.04.016
|
[29] |
LIMA F D, LEITE T S, HAIMOVICI M, et al. Population structure and reproductive dynamics of Octopus insularis (Cephalopoda: Octopodidae) in a coastal reef environment along northeastern Brazil[J]. Fish Res, 2014, 152: 86-92. doi: 10.1016/j.fishres.2013.08.009
|
[30] |
LAPTIKHOVSKY V V, NIGMATULLIN C M. Aspects of female reproductive biology of the orange-back squid, Sthenoteuthis pteropus (Steenstup) (Oegopsina: Ommastrephidae) in the eastern tropical Atlantic[J]. Sci Mar, 2005, 69(3): 383-390. doi: 10.3989/scimar.2005.69n3383
|
[31] |
VELLATHI V, SANTHANAM R. Fecundity of Bigfin squid, Sepioteuthis lessoniana (Lesson, 1830) (Cephalopoda: Loliginidae)[J]. Jordan J Biol Sci, 2013, 6(1): 39-44. doi: 10.12816/0000257
|
[32] |
LAROE E T. The culture and maintenance of the loliginid squids Sepioteuthis sepioidea and Doryteuthis plei[J]. Mar Biol, 1971, 9(1): 9-25. doi: 10.1007/BF00348813
|
[33] |
RODHOUSE P G, HATFIELD E M C. Dynamics of growth and maturation in the cephalopod Illex argentinus de Castellanos, 1960 (Teuthoidea: Ommastrephidae)[J]. Philos Trans R Soc Lond B Biol Sci, 1990, 329(1254): 229-241. doi: 10.1098/rstb.1990.0167
|
[34] |
PIOLA A R, PALMA E D, BIANCHI A A, et al. Physical oceanography of the SW Atlantic Shelf: a review[M]//HOFFMEYER M S, SABATINI M E, BRANDINI F P, et al. Plankton ecology of the southwestern Atlantic: from the subtropical to the subantarctic realm. Cham: Springer International Publishing, 2018: 37-56.
|
[35] |
沈建林, 张衡, 刘大鹏, 等. 摩洛哥沿岸头足类渔场时空分布及其与海温、叶绿素浓度的关系[J]. 渔业信息与战略, 2020, 35(4): 279-285. doi: 10.13233/j.cnki.fishis.2020.04.006
|
[36] |
ANDERSON C I, RODHOUSE P G. Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments[J]. Fish Res, 2001, 54(1): 133-143. doi: 10.1016/S0165-7836(01)00378-2
|
[37] |
BAZZINO G, QUIÑONES R A, NORBIS W. Environmental associations of shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) in the Northern Patagonian Shelf[J]. Fish Res, 2005, 76(3): 401-416. doi: 10.1016/j.fishres.2005.07.005
|
[38] |
刘赫威, 余为, 陈新军. 西南大西洋阿根廷滑柔鱼资源及其对环境响应的研究进展[J]. 中国水产科学, 2020, 27(10): 1254-1265.
|
[39] |
罗相忠, 覃维敏, 梁宏伟, 等. 长丰鲢繁殖生物学研究[J]. 淡水渔业, 2021, 51(2): 21-27. doi: 10.3969/j.issn.1000-6907.2021.05.003
|
[40] |
NIGMATULLIN C M, MARKAIDA U. Oocyte development, fecundity and spawning strategy of large sized jumbo squid Dosidicus gigas (Oegopsida: Ommastrephinae)[J]. J Mar Biolog Assoc UK, 2009, 89(4): 789-801. doi: 10.1017/S0025315408002853
|
[41] |
LAPTIKHOVSKY V, NIGMATULLIN C M, HOVING H, et al. Reproductive strategies in female polar and deep-sea bobtail squid genera Rossia and Neorossia (Cephalopoda: Sepiolidae)[J]. Polar Biol, 2008, 31(12): 1499-1507. doi: 10.1007/s00300-008-0490-4
|
[42] |
VILLANUEVA R, VIDAL E A G, FERNÁNDEZ-ÁLVAREZ F Á, et al. Early mode of life and hatchling size in Cephalopod molluscs: influence on the species distributional ranges[J]. PLoS One, 2016, 11: e0165334. doi: 10.1371/journal.pone.0165334
|
[43] |
PECL G. Flexible reproductive strategies in tropical and temperate Sepioteuthis squids[J]. Mar Biol, 2001, 138(1): 93-101. doi: 10.1007/s002270000452
|
[44] |
FERNANDEZ-ARCAYA U, DRAZEN J C, MURUA H, et al. Bathymetric gradients of fecundity and egg size in fishes: a Mediterranean case study[J]. Deep-Sea Res I, 2016, 116: 106-117. doi: 10.1016/j.dsr.2016.08.005
|
[45] |
LIN D M, CHEN X J, WEI Y R, et al. The energy accumulation of somatic tissue and reproductive organs in post-recruit female Illex argentinus and the relationship with sea surface oceanography[J]. Fish Res, 2017, 185: 102-114. doi: 10.1016/j.fishres.2016.09.023
|
[46] |
朱文斌, 朱海晨, 王雅丽, 等. 基于线性混合效应模型的日本鳀幼鱼叉长-体重关系异质性[J]. 应用生态学报, 2021, 32(12): 4532-4538. doi: 10.13287/j.1001-9332.202112.032
|
[47] |
FANELLI E, CARTES J E, PAPIOL V. Assemblage structure and trophic ecology of deep-sea demersal cephalopods in the Balearic basin (NW Mediterranean)[J]. Mar Freshw Res, 2012, 63(3): 264-274. doi: 10.1071/MF11157
|
[1] | XU Bo, YUAN Hongchun. Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network[J]. South China Fisheries Science, 2024, 20(6): 145-154. DOI: 10.12131/20240200 |
[2] | QIAN Cheng, ZHANG Jiapeng, TU Xueying, LIU Huang, QIAO Gan, LIU Shijing. Turbot fish egg recognition and counting method based on CBAM-UNet[J]. South China Fisheries Science, 2024, 20(6): 132-144. DOI: 10.12131/20240123 |
[3] | ZHANG Hongjiao, ZHANG Cunxi, WANG Rui, WANG Ke, QIAO Qian. Freshness recognition of small yellow croaker based on image processing and improved DenseNet network[J]. South China Fisheries Science, 2024, 20(3): 133-142. DOI: 10.12131/20230241 |
[4] | GONG Yuanjin, YANG Shujie. Dynamic water surface environment perception SLAM algorithm based on visual semantics and point-line fusion for unmanned surface vessels[J]. South China Fisheries Science, 2024, 20(3): 120-132. DOI: 10.12131/20240019 |
[5] | YUAN Yongming, SHI Pei. Study on fish movement monitoring method based on image processing[J]. South China Fisheries Science, 2018, 14(5): 109-114. DOI: 10.3969/j.issn.2095-0780.2018.05.014 |
[6] | LI Laihao, SUN Bolun, ZHAO Donghao. Research progress in detection and preparation methods for tetrodotoxin[J]. South China Fisheries Science, 2018, 14(3): 126-132. DOI: 10.3969/j.issn.2095-0780.2018.03.016 |
[7] | TANG Xianming, WANG Yingrui, LIU Cui, CHEN Fuxiao, YIN Yi, LIU Tao. Prelimary study of segment culture of Kappaphycus alvarezii[J]. South China Fisheries Science, 2014, 10(2): 36-41. DOI: 10.3969/j.issn.2095-0780.2014.02.005 |
[8] | HUANG Chunli, HUANG He, LIU Wenxia, GAO Ping, HUANG Guofang, LI Zhiqing, CHENG Hong, LUO Lin. Research progress on residual toxicity and detection methods of melamine[J]. South China Fisheries Science, 2011, 7(3): 76-80. DOI: 10.3969/j.issn.2095-0780.2011.03.014 |
[9] | ZHAO Fei, ZOU Weimin. Application of LAMP in the rapid detection of aquatic animal pathogens[J]. South China Fisheries Science, 2007, 3(2): 71-75. |
[10] | WANG Li, LIN Hong, CAO Limin. Detection of aminoglycosides in foods of animal origin[J]. South China Fisheries Science, 2006, 2(1): 76-79. |
1. |
徐菲,徐开达,张洪亮,卢占晖,周永东,李羽如,叶莹莹,马文静,金梓慧. 浙江岱衢洋海域春秋季游泳动物群落结构及生物量粒径谱特征. 海洋与湖沼. 2025(01): 165-174 .
![]() | |
2. |
Zhisen LUO,Murong YI,Xiaodong YANG,Xiao CHEN,Jinxi WANG,Changping JIANG,Fengming LIU,Konglan LUO,Xiongbo HE,Hung-Du LIN,Bin KANG,Yunrong YAN. Checklist of marine fishes in the Beibu Gulf: fish classification, resource protection, and biodiversity challenge. Journal of Oceanology and Limnology. 2025(01): 232-247 .
![]() |
|
3. |
李诗佳,施利燕,钟俊生,赵路路. 长江口南部水域春、秋季鱼类群落结构比较. 上海海洋大学学报. 2024(01): 135-149 .
![]() | |
4. |
李淼,许友伟,孙铭帅,范江涛,李佳俊,张魁,陈作志. 拉尼娜事件前后北部湾鱼类群落结构变化研究. 南方水产科学. 2023(02): 1-11 .
![]() | |
5. |
Chenyu Song,Zhong Tu,Na Song. Discordant patterns of genetic variation between mitochondrial and microsatellite markers in Acanthogobius ommaturus across the coastal areas of China. Acta Oceanologica Sinica. 2023(04): 72-80 .
![]() |
|
6. |
王鑫,李昌文,徐加涛,李士虎,宋可心,唐佳伟,马晓娜,冯志华. 灌河口海域水生动物群落结构及分布特征. 江苏海洋大学学报(自然科学版). 2023(04): 29-41 .
![]() |