WANG Xue-hui, DU Fei-yan, QIU Yong-song, LI Chun-hou, HUANG Hong-hui, SUN Dian-rong, JIA Xiao-ping. Study on the ecosystem model of Daya Bay I. A preliminary approach on energy flow model[J]. South China Fisheries Science, 2005, 1(3): 1-8.
Citation: WANG Xue-hui, DU Fei-yan, QIU Yong-song, LI Chun-hou, HUANG Hong-hui, SUN Dian-rong, JIA Xiao-ping. Study on the ecosystem model of Daya Bay I. A preliminary approach on energy flow model[J]. South China Fisheries Science, 2005, 1(3): 1-8.

Study on the ecosystem model of Daya Bay I. A preliminary approach on energy flow model

More Information
  • Received Date: March 21, 2005
  • Ecopath with Ecosim (EwE) is designed for straightforward construction, parameterization and analysis of mass-balance trophic models of aquatic ecosystems. Base on the data from environments, resources and ecology survey in Daya Bay during 1984~1986 and 1986~1987, the energy flow model of ecosystem in Daya Bay is constructed using the EwE package. According to the characteristic of the food composition of swimming animal in Daya Bay, the ecosystem comprised 15 function groups, which are marine mammals, carnivorous fish, benthic-feeding fish, zooplanktivorous, herbivorous fish, crabs, shrimps, cephalopods, zoobenthos, jellyfish, zooplankton, corals, submerged plant, phytoplankton and detritus, respectively. And the function groups can cover the main trophic flow of the ecosystem in Daya Bay. The result shows that the trophic level of the function groups varied from 1.0 to 3.88. The transfer efficiencies for each trophic level are 7.2%, 11.2%, 8.7%, 2.9%, respectively. The transfer efficiencies can be used for constructing a figure presenting the trophic flows in form of a pyramid. The total transfer efficiency of Daya Bay′s ecosystem is 8.9%, less than that of Lindeman (about 10%), perhaps a lot of submerged plant (Sargassum) in Daya Bay can not be utilized fully, and decayed and broke down. In course of the energy flow, the proportion of total flow originating from detritus is 48%, and from primary producer is 52%.

  • [1]
    广东省海岛资源综合调查大队等. 大亚湾海岛资源综合调查报告[R]. 广州: 广东科技出版社, 1992. https://www.las.ac.cn/front/book/detail?id=5997b7d1ba8db880c2b480fd2e65173d
    [2]
    国家海洋局第三研究所. 大亚湾海洋生态文集(Ⅰ)[C]. 北京: 海洋出版社, 1989. https://max.book118.com/html/2017/0528/109990200.shtm
    [3]
    国家海洋局第三研究所. 大亚湾海洋生态文集(Ⅱ)[C]. 北京: 海洋出版社, 1990. https://max.book118.com/html/2017/0528/109994712.shtm
    [4]
    徐恭昭等. 大亚湾环境与资源[M]. 安徽: 安徽科学技术出版社, 1989. https://www.dushu.com/book/10300684/
    [5]
    贾晓平, 郭金富, 林钦, 等. 大型石化综合工程对大亚湾渔业生态环境与水生生物资源影响的预测评价[A]. 见: 贾晓平主编. 南海渔业生态环境与生物资源的污染效应研究[C]. 北京: 海洋出版社, 2004.
    [6]
    张其永, 林秋眠, 林尤通, 等. 闽南-台湾浅滩渔场鱼类食物网研究[J]. 海洋学报, 1981, 3(2): 275-290. https://www.cnki.com.cn/Article/CJFDTotal-SEAC198102007.htm
    [7]
    邓景耀, 孟田湘. 渤海鱼类食物关系[J]. 海洋水产研究, 1988, 9: 151-172. https://www.zhangqiaokeyan.com/academic-journal-cn_acta-ecologica-sinica_thesis/02012109842958.html
    [8]
    韦晟, 姜为民. 黄海鱼类食物网研究[J]. 海洋与湖沼, 1992, 23(2): 182-191. https://www.cqvip.com/QK/90072X/19922/770477.html
    [9]
    GB 17378-1998, 海洋监测规范[S]. 北京: 标准出版社, 1998.
    [10]
    国家技术监督局. GB 12763.6-91, 海洋调查规范[S]. 北京: 标准出版社, 1991. https://d.wanfangdata.com.cn/periodical/zgbzh-e201102008
    [11]
    Polovina J J. Model of a coral reef ecosystem, PartⅠ: the ECOPATH model and its application to French Frigate Shoal[J]. Coral Reefs, 1984, 3(12): 1-11. doi: 10.1007/BF00306136
    [12]
    Ulanowicz R E. Growth and development: Ecosystem phenomenology[M]. Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4916-0
    [13]
    Christensen V, Pauly D. EcopathⅡ- a software for balancing steady-state ecosystem models and calculating network characteristics[J]. Ecol Modeling, 1992, 61(3-4): 169-185. doi: 10.1016/0304-3800(92)90016-8
    [14]
    Christensen V, Pauly D. A guide to the ECOPATHⅡ program[M]. ICLARM software 6.72, 1992. http://www.mendeley.com/research/guide-ecopath-ii-software-system-version-21/
    [15]
    Pauly D, Christensen V, Walters C. Ecopath, Ecosim, and ecospace as tools for evaluating ecosystem impact of fisheries[J]. ICES J Mar Sci, 2000, 57(3): 697-706. doi: 10.1006/jmsc.2000.0726
    [16]
    Gulland J A. Fish stock assessment: a manual of basi methods[M]. John Wiley and Sons, New York, 1983. https://www.semanticscholar.org/paper/Fish-Stock-Assessment.-A-Manual-of-Basic-Methods-Elliott-Gulland/96fd586f5fbff273eeb3b471b15767443beccd07
    [17]
    Pauly D. Fish population dynamics in tropical waters: a manual for use with programmable calculators[M]. ICLARM Stud Rew, 1984. 325. doi: 10.1016/0165-7836(86)90044-5
    [18]
    Lafontaine J, Peters R H. Empirical relationships for marine primary production: the effect of environmental variables[J]. Oceanol Acta, 1986, 9(1): 65-72. https://www.researchgate.net/publication/230759530_Empirical_relationship_for_marine_primary_production_the_effect_of_environmental_variables
    [19]
    Pauly D, Palomares M L. Shrimp comsumption by fish in Kuwait waters: a methodology, preliminary results and their implications for management and research[J]. Kuwait Bull Mar Sci, 1987, 9: 101-125. https://www.researchgate.net/publication/291754509_Shrimp_consumption_by_fish_in_Kuwait_waters_a_methodology_preliminary_results_and_their_implications_for_management_and_research
    [20]
    Pitcher T J, Watson R, Courtney A, et al. Assessment of Hong Kong′s inshore fishery resources[R]. Fisheries Centre Research Reports, 1998, 6(1): 1-78. https://open.library.ubc.ca/collections/52383/items/1.0074776
    [21]
    Pitcher T J, Buchary E A, Trujillo P. Spatial simulations of Hong Kong′s marine ecosystem: ecological and economic forecasting of marine protected areas with human-made reefs[R]. Fisheries Center Research Reports, 2002, 10(3): 1-72. https://www.researchgate.net/publication/276204667_Spatial_Simulations_of_Hong_Kong%27s_Marine_Ecosystem_Ecological_and_Economic_Forecasting_of_Marine_Protected_Areas_with_Human-Made_Reefs
    [22]
    Lin H-J, Shao K-T, Kuo S-R, et al. A trophic model of a sandy barrier lagoon at Chiku in Southwestern Taiwan[J]. Est Coast Shelf Sci, 1999, 48(5): 575-588. doi: 10.1006/ecss.1998.0457
    [23]
    Christensen V, Carl J, Pauly D. Ecopath with Ecosim: A use′s guide[M]. ICLARM, 2000. https://s3-us-west-2.amazonaws.com/legacy.seaaroundus/researcher/dpauly/PDF/2000/OtherItems/ECOPATH_WITH_ECOSIM_A_USERS_GUIDE.pdf
    [24]
    Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine food webs[J]. Science, 1998, 279(5352): 860-863. doi: 10.1126/science.279.5352.860
    [25]
    Tong L, Tang Q S. A preliminary approach on mass-balance ecopath model of the Bohai Sea[J]. Chinese J Appl Eco, 2000, 11(3): 435-440. https://pubmed.ncbi.nlm.nih.gov/11767650/
    [26]
    苏纪兰, 唐启升. 中国海洋生态系统动力学研究Ⅱ. 渤海生态系统动力学过程[M]. 北京: 科学出版社, 2002.212-312. https://www.zhangqiaokeyan.com/book-cn/081501282193.html
  • Related Articles

    [1]ZHANG Kexin, LUO Zexin, ZHANG Yuan, ZHAN Jianqiang, LU Yining, LIU Zhigang. Study on large-scale artificial seedling breeding technology of Tapes dorsatus[J]. South China Fisheries Science, 2023, 19(3): 51-59. DOI: 10.12131/20220262
    [2]CUI Ke, YANG Qibin, MA Zhenhua. Ingestion, digestion and food selection of crimson snapper(Lutjanus erythopterus) larvae and juveniles[J]. South China Fisheries Science, 2018, 14(6): 43-51. DOI: 10.12131/20180114
    [3]DONG Zaijie, LIU Nian, FU Jianjun, ZHU Wenbin, WANG Lanmei, SU Shengyan. Genetic analysis for six wild and selection populations of common carp (Cyprinus carpio) using microsatellites[J]. South China Fisheries Science, 2018, 14(4): 46-55. DOI: 10.3969/j.issn.2095-0780.2018.04.006
    [4]SHEN Xiashuang, AO Qiuwei, GAN Xi, TANG Yun, LUO Yongju, LIANG Junneng, ZHU Jiajie. Estimation of disease resistance and growth in F5 generation families of GIFT tilapia[J]. South China Fisheries Science, 2018, 14(3): 83-90. DOI: 10.3969/j.issn.2095-0780.2018.03.010
    [5]YUAN Ruipeng, LIU Jianyong, ZHANG Jiachen, CHEN Xiaoming, ZHENG Jingjing. Selection response and heritability of growth and high ammonia nitrogen tolerance in Litopenaeus vannamei[J]. South China Fisheries Science, 2017, 13(3): 83-89. DOI: 10.3969/j.issn.2095-0780.2017.03.011
    [6]TANG Shoujie, BI Xiang, WANG Chenghui, ZHANG Feiming, ZHANG Youliang, XIE Zhiqiang. Genetic potential analysis of three selective breeding populations of blunt snout bream (Megalobrama amblycephala) using microsatellite markers[J]. South China Fisheries Science, 2017, 13(2): 59-68. DOI: 10.3969/j.issn.2095-0780.2017.02.008
    [7]WANG Lanmei, ZHU Wenbin, DONG Zaijie, SU Shengyan, FU Jianjun, YAN Mingxin, LIU Nian. Differential analysis on growth of FFRC strain common carp (Cyprinus carpio) selection families at various culture stages[J]. South China Fisheries Science, 2017, 13(1): 43-49. DOI: 10.3969/j.issn.2095-0780.2017.01.006
    [8]JIANG Xiang, LIU Jianyong, LAI Zhifu. Selective responses and realized heritability estimation for a cultured Haliotis diversicolor aquatili population[J]. South China Fisheries Science, 2013, 9(2): 9-13. DOI: 10.3969/j.issn.2095-0780.2013.02.002
    [9]XIE Xiaoyong, ZHONG Jinxiang, LI Sifa, CAI Wanqi, ZHANG Hanhua, YE Wei, CHEN Huichong. Comparison of growth performance of F6, F7 and F8 of GIFT strain Oreochromis niloticus[J]. South China Fisheries Science, 2009, 5(1): 48-53. DOI: 10.3969/j.issn.1673-2227.2009.01.008
    [10]HAO Zhi-ming, WU Yan-yan, LI Lai-hao. A selection of enzyme in the Tilapia internal organs[J]. South China Fisheries Science, 2006, 2(2): 38-42.

Catalog

    Article views (5714) PDF downloads (3728) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return