Citation: | WANG Yingbin, LIU Qun. An elementary study of impacts of error structure on the estimation of fish natural mortality coefficient using cohort analysis (CA) model[J]. South China Fisheries Science, 2006, 2(3): 7-15. |
Pope′s (1972)cohort analysis model can be used to estimate fish natural mortality coefficient (M) when series abundance and catch data are available. Errors in both the model and data are usually neglected in usual calculations, regardless of whether it is realistic. This paper discusses the M estimation using Pope′s cohort analysis model, and a generalized linear model (GzLM) is used to explore the effect on the estimated results of three error structures (normal, lognormal and gamma). Monte Carlo simulation analyses show that when white noises (coefficient of variation, CV) in the data are less than about 10%, the estimated values of M are mostly reliable. The estimation quality of M using Pope′s model can be influenced by the assumption about the error structure in the estimation, and that lognormal distribution is appropriate for the Pope′s model. Two species of long-lived with low M and short-lived with high M were generated, and the simulation analysis indicates that the method performs better for short-lived species with high M. We then applied this method to the data of the Yellow Sea anchovy (Engraulis japonicus) under the three error structures. The results obtained from lognormal GzLM distribution are more viable than other distributions, and the estimated values of M are viable for young ages, for their more accurate observed data, than that of older ages.
[1] |
QUINNⅡ T J, DERISO R B. Quantitative fish dynamics [M]. New York: Oxford University Press, 1999: 542.
|
[2] |
CHAPMAN D G. Statistical problems in dynamics of exploited fisheries populations [C]. 4th ed. Berkley Symposium on Mathematical Statistics and Probability, California, 1961: 153-168.
|
[3] |
PAULIK G J. Estimates of mortality rates form tag recoveries [J]. Biometrics, 1963, 19 (1): 28-57. doi: 10.2307/2527571
|
[4] |
HEARN W S, SANDLAND R L, HAMPTON J. Robust estimation of the natural mortality rate in a completed tagging experiment with variable fishing intensity [J]. J Cons Int Explor Mer, 1987, 43(2): 107-117. doi: 10.1093/icesjms/43.2.107
|
[5] |
FAREBROTHER R W. Maximum likelihood estimates of mortality rates from single-release tagging studies [J]. J Cons Int Explor Mer, 1988, 44(3): 229-234. doi: 10.1093/icesjms/44.3.229
|
[6] |
JENSEN A L. Comparison of catch-curve methods for estimation of mortality [J]. Trans Am Fish Soc, 1985, 114 (5): 743-747. doi: 10.1577/1548-8659(1985)114<743:COCMFE>2.0.CO;2
|
[7] |
PAULY D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks [J]. J Cons Int Explor Mer, 1980, 39 (2): 175-192. doi: 10.1093/icesjms/39.2.175
|
[8] |
HOENING J M. Empirical use of longevity data to estimate mortality rates [J]. Fish Bull, 1983, 82 (1): 898-902. https://www.researchgate.net/publication/312967247_Empirical_use_of_longevity_data_to_estimate_mortality_rates
|
[9] |
GUNDERSON D R, DYGERT P H. Reproductive effort as a predictor of natural mortality rate [J]. J Cons Int Explor Mer, 1988, 44 (2): 200-209. doi: 10.1093/icesjms/44.2.200
|
[10] |
王迎宾, 刘群. 鱼类自然死亡率的估算及其影响因子的探讨[J]. 中国海洋大学学报, 2005, 35 (1): 20-24. doi: 10.3969/j.issn.1672-5174.2005.01.004
|
[11] |
ZHENG J. Uncertainties of natural mortality estimates for eastern Bering Sea snow crab, Chionoecetes opilio [J]. Fish Res, 2003, 65(1/3): 411-425. doi: 10.1016/j.fishres.2003.09.029
|
[12] |
POPE J G. An investigation of the accuracy of virtual population analysis using cohort analysis [J]. ICNAF Res Bull, 1972, 9(1): 65-74. https://www.semanticscholar.org/paper/An-investigation-of-the-accuracy-of-virtual-using-Pope-Pope/71d85abf3cc7d5cb94c7b4b373be0fc5fd178cfa
|
[13] |
JIAO Yan, CHEN Yong, SCHNEIDER D, et al. A simulation study of impacts of error structure on modeling stock-recruitment data using generalized linear models [J]. Can J Aquat Sci, 2004, 61(1): 122-133. doi: 10.1139/f03-149
|
[14] |
JIAO Yan, CHEN Yong. An application of generalized linear models in production model and sequential population analysis [J]. Fish Res, 2004, 70(2/3): 367-376. doi: 10.1016/j.fishres.2004.08.027
|
[15] |
MCCULLAGE P, NELDER J A. Generalized linear models [M]. 2nd ed. London: Chapman and Hall, 1989: 511.
|
[16] |
The Math Works Inc. MATLAB-the language of technical computing [R]. Natick: The Math Works Inc, Mass, 2002. https://web.stanford.edu/class/ee262/software/getstart.pdf
|
[17] |
PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical Recipes in FORTRAN 77; The Art of Scientific Computing (FORTRAN Numerical Recipes, vol. 1) [M]. 2nd ed. Cambridge: Cambridge University Press, 1992: 1447. https://www.cambridge.org/cc/universitypress/subjects/mathematics/numerical-recipes/numerical-recipes-fortran-77-art-scientific-computing-volume-1-2nd-edition?format=HB&isbn=9780521430647
|
[18] |
詹秉义. 渔业资源评估[M]. 北京: 中国农业出版社, 1995: 353. https://book.douban.com/subject/2048040/
|
[19] |
ZHAO Xianyong, HAMRE J, JIN Xianshi, et al. Recruitment, sustainable yield and possible ecological consequences of the sharp decline of the anchovy (Engraulis japonicus) stock in the Yellow Sea in the 1990s [J]. Fish Oceanogr, 2003, 12 (4): 495-501. doi: 10.1046/j.1365-2419.2003.00262.x
|
[1] | BAO Zhiming, ZOU Yongfeng, CAO Panhui, ZHANG Jiayuan, XU Yu, XU Zhiqiang, GUO Hui. Effect of high temperature stress on intestinal tissues morphology and transcriptome of Procambarus clarkii[J]. South China Fisheries Science, 2025, 21(1): 105-117. DOI: 10.12131/20240161 |
[2] | QIAO Di, LEI Ning, ZHU Junjie, ZHANG Chaonan, WANG Yanchao, ZHOU Ling. Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2024, 20(4): 164-176. DOI: 10.12131/20240050 |
[3] | HAO Tian, TANG Xianhu, JIANG Shouwen, WU Zhichao, XU Qianghua. Transcriptome comparative analysis of liver tissues of three plateau Schizothoracinae fish species[J]. South China Fisheries Science, 2024, 20(3): 92-100. DOI: 10.12131/20230204 |
[4] | SONG Ruhao, HU Ruiqin, LI Genfang, ZHANG Zhicong, XU Qianghua. Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology[J]. South China Fisheries Science, 2022, 18(6): 60-68. DOI: 10.12131/20220038 |
[5] | GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125 |
[6] | SHEN Ye, WANG Xingqiang, CAO Mei, ZHENG Nianhao, CHEN Baiyao, QIN Chuanxin. Transcriptome analysis of Exopalaemon carinicauda under low salinity stress[J]. South China Fisheries Science, 2020, 16(5): 19-32. DOI: 10.12131/20190267 |
[7] | HUO Huanhuan, LIU Yu, ZHOU Qiubai, GUO Feng, WEI Lili, PENG Mo, ZHANG Yanping, CHEN Wenjing. Primary study on differentially expressed genes screening of Monopterus albus and their regulation mechanism[J]. South China Fisheries Science, 2020, 16(1): 1-8. DOI: 10.12131/20190176 |
[8] | HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066 |
[9] | BEI Lei, SU Youlu, ZHAO Chao, XU Liwen, LIU Guangfeng, WANG Yu, GUO Zhixun, FENG Juan. Cloning rbsB gene from Vibrio harveyi and its expression[J]. South China Fisheries Science, 2018, 14(2): 75-82. DOI: 10.3969/j.issn.2095-0780.2018.02.010 |
[10] | YU Wenbo, ZHU Kecheng, GUO Huayang, ZHANG Nan, SUN Xiaoxiao, WU Na, ZHANG Dianchang. Cloning and expression analysis of MHCⅡβ gene in Trachinotus ovatus[J]. South China Fisheries Science, 2017, 13(4): 69-79. DOI: 10.3969/j.issn.2095-0780.2017.04.009 |
1. |
唐峰华,巴尧骥,肖戈,石永闯,赵国庆,郭爱,张衡,崔雪森,陈峰. 西北印度洋公海鸢乌贼的繁殖生物学及其与环境要素的关系. 上海海洋大学学报. 2025(02): 350-364 .
![]() | |
2. |
赵艺翔,朱凯,王孟佳,王嘉浩,陈峰,朱文斌. 西北印度洋雌性鸢乌贼繁殖生物学特性研究. 海洋渔业. 2025(02): 273-282 .
![]() | |
3. |
温利红,张衡,方舟,陈新军. 鸢乌贼渔业资源研究进展. 水产科学. 2023(03): 527-537 .
![]() | |
4. |
郭有俊,张丽姿,刘毅,曾笑薇,招春旭,李渊,颜云榕. 基于内壳生长纹的秋季东印度洋鸢乌贼生长特性. 水产学报. 2022(11): 2076-2083 .
![]() | |
5. |
颜云榕,邱星宇,张丽姿,钟亚娜,周倍合,招春旭,李忠炉. 南沙海域鸢乌贼繁殖生物学特性. 广东海洋大学学报. 2021(03): 20-27 .
![]() | |
6. |
陆化杰,宁欣,刘维,张羽翔,陈子越,陈新军. 不同气候条件下南海西沙海域鸢乌贼(Sthenoteuthis oualaniensis)渔业生物学比较研究. 海洋与湖沼. 2021(04): 1029-1038 .
![]() | |
7. |
朱凯,张立川,肖楚源,陈新军,林东明,朱俊磊. 南海鸢乌贼微型群雌性个体繁殖力研究. 渔业科学进展. 2020(06): 140-148 .
![]() | |
8. |
郭有俊,吴文秀,凌炜琪,招春旭,冯波,颜云榕. 海南东南部海域春季鸢乌贼CPUE与海洋环境关系. 广东海洋大学学报. 2020(06): 63-70 .
![]() | |
9. |
黄佳兴,龚玉艳,徐姗楠,陈作志,张俊,于文明. 南海中西部海域鸢乌贼中型群和微型群的营养生态位. 应用生态学报. 2019(08): 2822-2828 .
![]() | |
10. |
江淼,马胜伟,吴洽儿. 鸢乌贼资源综合利用技术研究现状. 食品工业科技. 2018(06): 340-344 .
![]() | |
11. |
江淼,马胜伟,吴洽儿. 南海鸢乌贼资源探捕与开发. 中国渔业经济. 2018(02): 65-70 .
![]() | |
12. |
粟丽,陈作志,张鹏,李杰,王欢欢,黄佳兴. 2017年南海中南部渔场灯光罩网渔获物组成及渔获率时空分布. 南方水产科学. 2018(05): 11-20 .
![]() | |
13. |
冯菲. 大数据技术在南海鸢乌贼资源调查上的研究进展. 安徽农业科学. 2018(33): 12-13+18 .
![]() | |
14. |
黄卉,杨丽芝,杨贤庆,李来好,郝淑贤,魏涯,王锦旭. 南海鸢乌贼墨汁多糖分离纯化及组分分析. 食品科学. 2017(24): 118-123 .
![]() |