BAO Zhiming, ZOU Yongfeng, CAO Panhui, ZHANG Jiayuan, XU Yu, XU Zhiqiang, GUO Hui. Effect of high temperature stress on intestinal tissues morphology and transcriptome of Procambarus clarkii[J]. South China Fisheries Science, 2025, 21(1): 105-117. DOI: 10.12131/20240161
Citation: BAO Zhiming, ZOU Yongfeng, CAO Panhui, ZHANG Jiayuan, XU Yu, XU Zhiqiang, GUO Hui. Effect of high temperature stress on intestinal tissues morphology and transcriptome of Procambarus clarkii[J]. South China Fisheries Science, 2025, 21(1): 105-117. DOI: 10.12131/20240161

Effect of high temperature stress on intestinal tissues morphology and transcriptome of Procambarus clarkii

More Information
  • Received Date: July 11, 2024
  • Revised Date: October 06, 2024
  • Accepted Date: November 13, 2024
  • Available Online: December 05, 2024
  • To explore the mechanism of the intestinal tract of red swamp crayfish (Procambarus clarkii) under high temperature stress close to its physiological limit, we conducted the high-temperature stress experiments at 32 ℃ and 37 ℃, and collected the intestinal tissues after 24 h and 72 h of stress, for tissue sectioning observation and transcriptomic analysis. The results show that high temperature caused significant damages to the intestinal tissue structure of crayfish, and the damage increased with the increase of stress temperature and stress time. Compared with the control group (26 ℃), 2 462 and 4 619 differentially expressed genes (DEGs) were identified during 32 ℃ stress for 24 h and 72 h, respectively. During 37 ℃ stress for 24 h and 72 h, 1 825 and 7 298 DEGs were identified, respectively. KEGG enrichment analysis shows that the DEGs were significantly enriched in the endoplasmic reticulum protein processing and metabolic pathways, and the enrichment frequency of endoplasmic reticulum protein processing pathways increased when the stress temperature increased from 32 ℃ to 37 ℃ during the same stress time, which indicates that they played an important role in coping with high temperature stress. According to the GO functional annotation, DEGs were mainly enriched in the energy metabolism-related processes such as carbohydrate metabolism and protein folding.

  • [1]
    YUE G H, LI J, BAI Z Y, et al. Genetic diversity and population structure of the invasive alien red swamp crayfish[J]. Biol Invasions, 2010, 12(8): 2697-2706. doi: 10.1007/s10530-009-9675-1
    [2]
    XU Z Q, GAO T H, XU Y, et al. A chromosome-level reference genome of red swamp crayfish Procambarus clarkii provides insights into the gene families regarding growth or development in crustaceans[J]. Genomics, 2021, 113(5): 3274-3284. doi: 10.1016/j.ygeno.2021.07.017
    [3]
    WAN J J, XI Q, TANG J Q, et al. Effects of pelleted and extruded feed on growth performance, intestinal histology and microbiota of juvenile red swamp crayfish (Procambarus clarkii)[J]. Animals, 2022, 12(17): 2252. doi: 10.3390/ani12172252
    [4]
    全国水产技术推广总站, 中国水产学会. 中国小龙虾产业发展报告(2024)[J]. 中国水产, 2024(7): 14-20.
    [5]
    夏智宏, 刘敏, 秦鹏程, 等. 2022年长江流域高温干旱过程及其影响评估[J]. 人民长江, 2023, 54(2): 21-28.
    [6]
    LIU S Y, WANG Z Y, WANG Z, et al. Comparison of the gut microbiota and metabolism in different regions of red swamp crayfish (Procambarus clarkii)[J]. Front Microbiol, 2023, 14: 1289634. doi: 10.3389/fmicb.2023.1289634
    [7]
    LI R H, BAI S H, YANG D C, et al. A crayfish Ras gene is involved in the defense against bacterial infection under high temperature[J]. Fish Shellfish Immunol, 2019, 86: 608-617. doi: 10.1016/j.fsi.2018.11.062
    [8]
    朱宏泽. 高温期间对虾病害防治[J]. 水产文摘, 2004(8): 6.
    [9]
    凌宗欣, 唐立. 树突状细胞与肠道免疫[J]. 中国微生态学杂志, 2008, 20(3): 310-315.
    [10]
    RUAN X H, CHENG H T, SHAN J H, et al. Effect of eyestalk ablation and water temperature on the gonadal transcriptome of greasyback shrimp (Metapenaeus ensis)[J]. Aquac Rep, 2024, 39: 102374. doi: 10.1016/j.aqrep.2024.102374
    [11]
    SHI W J, HU R H, WANG P, et al. Transcriptome analysis of acute high temperature-responsive genes and pathways in Palaemon gravieri[J]. Comp Biochem Phys D, 2022, 41: 100958.
    [12]
    WANG Z Q, YANG L L, ZHOU F, et al. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of crayfish (Procambarus clarkii) to copper stress[J]. J Hazard Mater, 2023, 448: 130820. doi: 10.1016/j.jhazmat.2023.130820
    [13]
    LIN W, WU J Y, LUO H M, et al. Sub-chronic ammonia exposure induces hepatopancreatic damage, oxidative stress, and immune dysfunction in red swamp crayfish (Procambarus clarkii)[J]. Ecotox Environ Safe, 2023, 254: 114724. doi: 10.1016/j.ecoenv.2023.114724
    [14]
    LIU X, BIAN D D, JIANG J J, et al. Transcriptomic analyses provide new insights into immune response of the Procambarus clarkii intestines to Aeromonas hydrophila challenge[J]. Aquac Rep, 2024, 36: 102103. doi: 10.1016/j.aqrep.2024.102103
    [15]
    LU X, TANG S, LIU X, et al. Comparative transcriptome analysis reveals the immune defense mechanism of the red swamp crayfish (Procambarus clarkii) in response to Vibrio parahaemolyticus challenge[J]. Aquaculture, 2024, 591: 741086. doi: 10.1016/j.aquaculture.2024.741086
    [16]
    ZHANG L, SONG Z W, ZHONG S, et al. Acute hypoxia and reoxygenation induces oxidative stress, glycometabolism, and oxygen transport change in red swamp crayfish (Procambarus clarkii): application of transcriptome profiling in assessment of hypoxia[J]. Aquac Rep, 2022, 23: 101029. doi: 10.1016/j.aqrep.2022.101029
    [17]
    张龙岗, 董学飒, 朱永安, 等. 急性盐度胁迫对克氏原螯虾肝脏抗氧化酶及鳃丝Na+/K+-ATP酶活力的影响[J]. 淡水渔业, 2015, 45(4): 87-91.
    [18]
    XIAO Y, ZHANG Y M, XU W B, et al. The effects of salinities stress on histopathological changes, serum biochemical index, non-specific immune and transcriptome analysis in red swamp crayfish Procambarus clarkii[J]. Sci Total Environ, 2022, 840: 156502. doi: 10.1016/j.scitotenv.2022.156502
    [19]
    LUO L, HUANG J H, LIU D L, et al. Transcriptome reveals the important role of metabolic imbalances, immune disorders and apoptosis in the treatment of Procambarus clarkii at super high temperature[J]. Comp Biochem Phys D, 2021, 37: 100781.
    [20]
    李铭, 董卫军, 邢迎春, 等. 温度对克氏原螯虾幼虾发育和存活的影响[J]. 水利渔业, 2006, 26(2): 36-37.
    [21]
    LI S X, LIN Y B, HE N J, et al. Antioxidation, immunity and hepatopancreatic histology of red swamp crayfish (Procambarus clarkii) subjected to low-temperature aerial exposure stress and re-immersion[J]. Comp Biochem Physiol A, 2023, 282: 111441. doi: 10.1016/j.cbpa.2023.111441
    [22]
    WANG L, ZHU Q Q, HU M, et al. Toxic mechanisms of nanoplastics exposure at environmental concentrations on juvenile red swamp crayfish (Procambarus clarkii): from multiple perspectives[J]. Environ Pollut, 2024, 352: 124125. doi: 10.1016/j.envpol.2024.124125
    [23]
    李生瑄. 克氏原螯虾 (Procambarus clarkii) 对三种环境胁迫的生理生态响应[D]. 宜昌: 长江大学, 2023: 19-27.
    [24]
    SILVEYRA G R, SILVEYRA P, BRWN M, et al. Oxidative stress and histopathological effects by microplastic beads, in the crayfish Procambarus clarkii, and fiddler crab Leptuca pugilator[J]. Chemosphere, 2023, 343: 140260. doi: 10.1016/j.chemosphere.2023.140260
    [25]
    WEI K Q, YANG J X. Oxidative damage induced by copper and beta-cypermethrin in gill of the freshwater crayfish Procambarus clarkii[J]. Ecotox Environ Safe, 2015, 113: 446-453. doi: 10.1016/j.ecoenv.2014.12.032
    [26]
    CROLL S L, WATTS S A. The effect of temperature on feed consumption and nutrient absorption in Procambarus clarkii and Procambarus zonangulus[J]. J World Aquac Soc, 2004, 35(4): 478-488. doi: 10.1111/j.1749-7345.2004.tb00113.x
    [27]
    FLOREA L, SONG L, SALZBERG S L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues[J]. F1000research, 2013, 2: 188. doi: 10.12688/f1000research.2-188.v1
    [28]
    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [29]
    ZHANG X, ZHANG Y H, WU T, et al. Fish decay-accelerating factor (DAF) regulates intestinal complement pathway and immune response to bacterial challenge[J]. Fish Shellfish Immunol, 2024, 151: 109741.
    [30]
    ZHOU Q C, BUENTELLO J A, GATLIN D M. Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus)[J]. Aquaculture, 2010, 309(1/2/3/4): 253-257.
    [31]
    HUANG Y, REN Q. Research progress in innate immunity of freshwater crustaceans[J]. Dev Comp Immunol, 2020, 104: 103569. doi: 10.1016/j.dci.2019.103569
    [32]
    韩丰韦, 王哲奇, 刘晓静, 等. 岩藻多糖调控肠道黏膜屏障功能及其在动物生产中的应用[J]. 饲料研究, 2024(7): 151-156.
    [33]
    ZHOU J, WANG L, XIN Y, et al. Effect of temperature on antioxidant enzyme gene expression and stress protein response in white shrimp, Litopenaeus vannamei[J]. J Therm Biol, 2010, 35(6): 284-289. doi: 10.1016/j.jtherbio.2010.06.004
    [34]
    DUAN Y F, WANG Y, ZHANG J S, et al. Elevated temperature disrupts the mucosal structure and induces an immune response in the intestine of whiteleg shrimp Litopenaeus vannamei (Boone, 1931) (Decapoda: Dendrobranchiata: Penaeidae)[J]. J Crustacean Biol, 2018, 38(5): 635-640. doi: 10.1093/jcbiol/ruy055
    [35]
    丁明孝, 王喜忠, 张传茂, 等. 细胞生物学[M]. 北京: 高等教育出版社, 2020: 83-84.
    [36]
    HENDERSHOT L M. The ER function BiP is a master regulator of ER function[J]. Mt Sinaij Med, 2004, 71(5): 289-297.
    [37]
    WU Y J, PEI Y L, QIN Y H. Developmental expression of heat shock proteins 60, 70, 90, and A2 in rabbit testis[J]. Cell Tissue Res, 2011, 344(2): 355-363. doi: 10.1007/s00441-011-1151-4
    [38]
    BALCH W E, MORIMOTO R I, DILLIN A, et al. Adapting proteostasis for disease intervention[J]. Science, 2008, 319(5865): 916-919. doi: 10.1126/science.1141448
    [39]
    ZHANG X X, ZHU H C, YUAN J B, et al. Diversity of heat shock proteins in response to various stressors in the Pacific white shrimp Litopenaeus vannamei[J]. Aquaculture, 2024, 584: 740647. doi: 10.1016/j.aquaculture.2024.740647
    [40]
    RUNGRASSAMEE W, LEELATANAWIT R, JIRAVANICHPAISAL P, et al. Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon[J]. Dev Comp Immunol, 2010, 34(10): 1082-1089. doi: 10.1016/j.dci.2010.05.012
    [41]
    HSIEH S L, LIAO W T, KUO C M. Fatty acid desaturation and stearoyl-CoA desaturase expression in the hepatic microsomes of milkfish, Chanos chanos, under cold shock[J]. 台湾水产学会刊, 2002, 29(1): 31-43.
    [42]
    GONZÁLEZ-RUÍZ R, LEYVA-CAMILLO L, PEREGÑNO-UÑARTE A B, et al. The combination of hypoxia and high temperature affects heat shock, anaerobic metabolism, and pentose phosphate pathway key components responses in the white shrimp (Litopenaeus vannamei)[J]. Cell Stress Chaperones, 2023, 28(5): 493-509. doi: 10.1007/s12192-022-01265-1
    [43]
    OCAMPO L, PATIÑO D, RAMÍREZ C. Effect of temperature on hemolymph lactate and glucose concentrations in spiny lobster Panulirus interruptus during progressive hypoxia[J]. J Exp Mar Biol Ecol, 2003, 296(1): 71-77. doi: 10.1016/S0022-0981(03)00317-4
    [44]
    QUEZADA-CALVILLO R, ROBAYO-TORRES C C, AO Z H, et al. Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose[J]. J Pediatr Gastr Nutr, 2007, 45(1): 32-43. doi: 10.1097/MPG.0b013e31804216fc
    [45]
    QUEZADA-CALVILLO R, ROBAYO-TORRES C C, OPEKUN A R, et al. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch α-Glucogenesis3[J]. J Nutr, 2007, 137(7): 1725-1733. doi: 10.1093/jn/137.7.1725
    [46]
    VASUDEVAN S, RAJENDRAN S. Thermal stress induced hyperglycemia in the blue swimmer crab, Portunus pelagicus[J]. J Therm Biol, 2021, 100: 103076. doi: 10.1016/j.jtherbio.2021.103076
    [47]
    YOHNA M A, RAY G W, YANG Q, et al. Protective effects of butyric acid during heat stress on the survival, immune response, histopathology, and gene rxpression in the hepatopancreas of juvenile Pacific shrimp (L. vannamei)[J]. Fish Shellfish Immunol, 2024, 150: 109610. doi: 10.1016/j.fsi.2024.109610
  • Related Articles

    [1]CAO Zhengliang, WANG Zixian, LI Zhaocheng, JIANG Shan, JIANG Qianqing, HU Qingsong, JIN Yuxue. Study on classification models for acoustic signals of Litopenaeus vannamei feeding on different kinds of diets[J]. South China Fisheries Science, 2025, 21(2): 27-37. DOI: 10.12131/20240226
    [2]SUN Yuanchen, XU Bingjie, CAO Yichou, XU Yingjie, QIN Fenju, YUAN Hongxia. Protective effects of addition of nano cerium oxide in diets on Eriocheir sinensis under ammonia-nitrogen and Aeromonas hydrophila stresses[J]. South China Fisheries Science, 2022, 18(3): 94-101. DOI: 10.12131/20210209
    [3]SUN Xinyi, HUANG Xiaolin, HUANG Zhong, CAO Xiaocong, ZHOU Ting, LIN Heizhao, SHU Hu, YU Wei, YANG Yukai, LI Tao. Diet feeding, oxygen consumption rhythm and gastrointestinal evacuation time of Trachinotus ovatus[J]. South China Fisheries Science, 2019, 15(5): 77-83. DOI: 10.12131/20190072
    [4]XIE Shiwei, TIAN Lixia, LIU Yongjian, ZHANG Haitao, NIU Jin, LIANG Jianjun, FANG Weiping, SU Jicai. Vitamin D3 requirement of grouper (Epinephelus coioides) in practical diet[J]. South China Fisheries Science, 2019, 15(4): 61-67. DOI: 10.12131/20190029
    [5]LU Zhurun, JIANG Xiamin, DUAN Xuemei, WANG Chunlin. Effects of temperature, sediment and food on hatching and growth of juvenile, young Hemifusus tuba[J]. South China Fisheries Science, 2009, 5(3): 10-14. DOI: 10.3969/j.issn.1673-2227.2009.03.002
    [6]LI Min, ZHANG Hanhua, ZHU Changbo, WU Jinfeng, CHEN Lixiong. Effects of different diet combinations on the growth and survival of juvenile black abalone[J]. South China Fisheries Science, 2007, 3(6): 40-46.
    [7]LI Min, ZHU Changbo, ZHANG Hanhua, CHEN Lixiong, WU Jinfeng. Effects of diets acclimation on the feeding preference of juvenile black abalone[J]. South China Fisheries Science, 2007, 3(4): 14-19.
    [8]JIANG Rendang. Effects of different initial feeds on growth and survival rate of larval Oncorhynchus mykiss[J]. South China Fisheries Science, 2007, 3(3): 53-56.
    [9]LI Min, ZHANG Hanhua, ZHU Changbo. Advance of study on effects of environment factors and diets on growth of abalone[J]. South China Fisheries Science, 2007, 3(2): 76-80.
    [10]HUANG Guo-qiang, DONG Shuang-lin, WANG Fang. Effects of different combinations of diets on the growth and food conversion efficiency of Chinese shrimp, Fenneropenaeus chinensis[J]. South China Fisheries Science, 2005, 1(5): 26-32.
  • Cited by

    Periodical cited type(4)

    1. 钟声平,蔡小辉,宋建达,刘旭佳,彭银辉,黄亮华,葛长字,黄国强. 拟穴青蟹对不同饵料稳定同位素的周转和分馏. 渔业科学进展. 2025(01): 30-45 .
    2. 周冬平,刘磊,付媛媛,方伟,王超越,王春琳. 盐碱水池塘不同饵料投喂条件下拟穴青蟹生长、营养及血清生化指标的比较. 水产学报. 2024(04): 350-365 .
    3. 郑纯纯,周厚杰,史策,王春琳,母昌考,叶央芳,李荣华,吴清洋,刘海娟,王晓朋,周月越,陈书健. 耐盐碱水稻–拟穴青蟹综合种养系统青蟹食物来源分析. 水生生物学报. 2024(11): 1855-1861 .
    4. 李丹怡,饶义勇,王许诺,王增焕,黄珂. 稳定同位素比率与元素分析技术在水产品溯源中的研究进展. 海洋渔业. 2024(06): 806-817 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return