JIANG Shuxia, KONG Xianghong, HUANG Xiaoshuang, YE Xuchang, CAO Daomei. Study on hydrodynamic characteristics and flow field visualization of multi-blade controllable otter board based on CFD[J]. South China Fisheries Science, 2024, 20(5): 136-148. DOI: 10.12131/20240095
Citation: JIANG Shuxia, KONG Xianghong, HUANG Xiaoshuang, YE Xuchang, CAO Daomei. Study on hydrodynamic characteristics and flow field visualization of multi-blade controllable otter board based on CFD[J]. South China Fisheries Science, 2024, 20(5): 136-148. DOI: 10.12131/20240095

Study on hydrodynamic characteristics and flow field visualization of multi-blade controllable otter board based on CFD

More Information
  • Received Date: April 30, 2024
  • Revised Date: May 21, 2024
  • Accepted Date: June 16, 2024
  • Available Online: June 18, 2024
  • Traditional otter board controls working depth by changing length of the warp and towing speed, and adjusts working posture by changing fixed joint positions between otter board, warp and sweep line, which involves complex operation. To provide scientific references for the design and research of controllable variable-water-depth otter boards, we designed a multi-blade controllable otter board and employed computational fluid dynamics (CFD) simulation to investigate the effects of the rotation direction and angle (−40°~40°) of blades at different positions (Upper and lower ends) on its hydrodynamic performance. The results reveal that: 1) when the blades were closed, the lift coefficient of the multi-leaf controllable otter board reached its maximum value of 0.88 at an attack angle of 20°; its lift-to-drag ratio peaked at 8.85 at an attack angle of 5°. 2) At an attack angle of 0°, when the blades at both ends of the otter board rotated in a negative direction, the lift gradually decreased to zero and reversed its direction at a rotation angle of −20°; when the blades rotated in a positive direction, the lift coefficient first increased and then decreased, reaching its maximum value of 0.32 at a rotation angle of 20°; the lift-to-drag ratio decreased as the rotation angle increased. 3) At an attack angle of 20°, when the blades at both ends of the otter board rotated in a positive direction, the lift coefficient continuously decreased; when the blades rotated in a negative direction, the lift coefficient first increased and then decreased, reaching its maximum value of 1.05 at a rotation angle of −10°; the lift-to-drag ratio peaked at 5.25 at a rotation angle of −20°. 4) Under the two angles of attack, when the blades at both ends rotated individually in a positive direction, the Z-axis force coefficient increased first and then decreased.

  • [1]
    许柳雄. 渔具理论与设计学[M]. 北京: 中国农业出版社, 2004: 132-148.
    [2]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 40-74.
    [3]
    SHAN C X, TANG H, THIERRY N N B, et al. Sinking behavior of netting panels made with various twine materials, solidity ratios, knot types, and leadline weights in flume tank[J]. J Mar Sci Eng, 2023, 11(10): 1972-1986. doi: 10.3390/jmse11101972
    [4]
    郭根喜, 刘同渝, 黄小华, 等. 拖网网板动力学理论研究与实践[M]. 广州: 广东科技出版社, 2008: 254-261.
    [5]
    朱一舟. 翼型分水板的水动力性能分析及型线优化[D]. 哈尔滨: 哈尔滨工业大学, 2022: 55-68.
    [6]
    孙满昌. 海洋渔业技术学[M]. 北京: 中国农业出版社, 2012: 93-100.
    [7]
    庄鑫, 邢彬彬, 许传才, 等. 网板水动力性能研究综述[J]. 渔业现代化, 2015, 42(5): 63-68.
    [8]
    LIU J, HUANG H L, LI L Z, et al. Hydrodynamic characteristics of the oval cambered double slotted otter board in bottom trawl fisheries[J]. IOP Conf Ser: Earth Environ Sci, 2017, 77: 012012-012021. doi: 10.1088/1755-1315/77/1/012012
    [9]
    刘志强. 中层网板水动力性能及流场可视化研究[D]. 上海: 上海海洋大学, 2020: 23-32.
    [10]
    庄鑫. 高升力双叶型网板的开发研究[D]. 大连: 大连海洋大学, 2015: 35-44.
    [11]
    XU Q C, HUANG L Y, ZHAO F F, et al. Effects of aspect ratio on the hydrodynamic performance of full-scale rectangular otter board: numerical simulation study[J]. Ocean Engin, 2017, 142: 338-347. doi: 10.1016/j.oceaneng.2017.07.007
    [12]
    CHU W H, GUO H Q, ZHANG H Z, et al. Effect of structural parameters on the hydrodynamic performance of vertical curved V-type otter board[J]. https://doi.org/10.1016/j.aaf.2023.02.004.
    [13]
    FUKUDA K, HU F X, TOKAI T, et al. Effects of aspect and camber ratios on hydrodynamic characteristics of biplane-type otter board[J]. Nippon Suisan Gakkaishi, 1999, 65(5): 860-865. doi: 10.2331/suisan.65.860
    [14]
    王明彦, 王锦浩, 张勋, 等. 立式V型曲面网板的水动力性能[J]. 水产学报, 2004, 28(3): 311-315.
    [15]
    刘健, 黄洪亮, 吴越, 等. 2种立式曲面缝翼式网板水动力学性能的试验研究[J]. 南方水产科学, 2015, 11(1): 68-74.
    [16]
    刘志强, 许柳雄, 唐浩, 等. 不同工作姿态下立式双曲面网板水动力及周围流场特性研究[J]. 南方水产科学, 2020, 16(2): 87-98.
    [17]
    XU Q C, HUANG L Y, ZHAO F F, et al. Study on the hydrodynamic characteristics of the rectangular V-type otter board using computational fluid dynamics[J]. Fish Sci, 2017, 83(2): 181-190. doi: 10.1007/s12562-017-1065-5
    [18]
    XU Q C, FENG C L, HUANG L Y, et al. Parameter optimization of a double-deflector rectangular cambered otter board: numerical simulation study[J]. Ocean Engin, 2018, 162: 108-116. doi: 10.1016/j.oceaneng.2018.05.008
    [19]
    TAKAHASHI Y, FUJIMORI Y, HU F X, et al. Design of trawl otter boards using computational fluid dynamics[J]. Fish Res, 2015, 161: 400-407. doi: 10.1016/j.fishres.2014.08.011
    [20]
    YOU X X, HU F X, ZHUANG X, et al. Effect of wingtip flow on hydrodynamic characteristics of cambered otter board[J]. Ocean Engin, 2021, 222: 108611-108625. doi: 10.1016/j.oceaneng.2021.108611
    [21]
    庄鑫, 邢彬彬, 许传才, 等. 网板周围流态的可视化研究进展[J]. 大连海洋大学学报, 2015, 30(2): 237-242.
    [22]
    LIU J, HUANG H L, CHEN S. Effect of aspect ratio on hydrodynamic performance of high lift otter board in trawl fisheries[J]. IOP Conf Ser: Earth Environ Sci, 2018, 153: 032034-032043. doi: 10.1088/1755-1315/153/3/032034
    [23]
    WANG L, ZHANG X, WAN R, et al. Optimization of the hydrodynamic performance of a double-vane otter board based on orthogonal experiments[J]. J Mar Sci Eng, 2022, 10(9): 1177-1191. doi: 10.3390/jmse10091177
    [24]
    LEE J, YOON H, PARK Y, et al. Design and fabrication of fluid flow characteristic controllable trawl door using a trailing edge flap[J]. J Mech Sci Technol, 2019, 33(12): 5623-5630. doi: 10.1007/s12206-019-1103-6
    [25]
    WANG G, HUANG L, WANG L Y, et al. A metamodeling with CFD method for hydrodynamic optimisations of deflectors on a multi-wing trawl door[J]. Ocean Engin, 2021, 232: 109045-109059. doi: 10.1016/j.oceaneng.2021.109045
    [26]
    SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows[J]. Comput Fluids, 1995, 24(3): 227-238. doi: 10.1016/0045-7930(94)00032-T
    [27]
    LI Y Y, WANG G, XU Q C, et al. Study of the influence of aspect ratios on hydrodynamic performance of a symmetrical elliptic otter board[J]. Symmetry, 2022, 14(8): 1566-1581. doi: 10.3390/sym14081566
    [28]
    陈刚. 拖网网板力学性能研究及结构优化[D]. 上海: 上海海洋大学, 2020: 2-4.
    [29]
    ZHUANG X, YOU X X, KUMAZAWA T, et al. Effect of spanwise slit on hydrodynamic characteristics of biplane hyper-lift trawl door[J]. Ocean Engin, 2022, 249: 1-14.
    [30]
    LEIFSSON L, HERMANNSSON E, KOZIEL S. Optimal shape design of multi-element trawl-doors using local surrogate models[J]. J Comput Sci-Neth, 2015, 10: 55-62. doi: 10.1016/j.jocs.2015.01.006
    [31]
    SHEN X L, HU F X, KUMAZAWA T, et al. Hydrodynamic characteristics of a hyper-lift otter board with wing-end plates[J]. Fish Sci, 2015, 81(3): 433-442. doi: 10.1007/s12562-015-0873-8
    [32]
    YOU X X, HU F X, KUMAZAWA T, et al. Hydrodynamic performance of a newly designed biplane-type hyper-lift trawl door for otter trawling[J]. Appl Ocean Res, 2020, 104: 1-11.
    [33]
    SISTIAGA M, HERRMANN B, GRIMALDO E, et al. Effect of lifting the sweeps on bottom trawling catch efficiency: a study based on the Northeast arctic cod (Gadus morhua) trawl fishery[J]. Fish Res, 2015, 167: 164-173. doi: 10.1016/j.fishres.2015.01.015
    [34]
    SALA A, FARRAN J D A P, ANTONIJUAN J, et al. Performance and impact on the seabed of an existing- and an experimental-otterboard: comparison between model testing and full-scale sea trials[J]. Fish Res, 2009, 100(2): 156-166. doi: 10.1016/j.fishres.2009.07.004
    [35]
    黄小双, 孙翁杰, 王静峰, 等. 仿生鱿鱼俯仰姿态下水动力学数值模拟[J]. 上海海洋大学学报, 2022, 31(1): 252-260.
    [36]
    孔祥洪, 黄小双, 刘帆, 等. 基于仿生江豚鱼群共融型装置的设计与实现[J]. 渔业现代化, 2021, 48(5): 18-25. doi: 10.3969/j.issn.1007-9580.2021.05.003
    [37]
    刘景彬, 唐浩, 许柳雄, 等. 倾斜状态对V形网板水动力和周围流场特征的影响[J]. 中国水产科学, 2022, 29(5): 755-769.
    [38]
    EIGHANI M, VEIGA-MALTA T, O'NEILL F G. Hydrodynamic performance of semi-pelagic self-adjusting otter boards in demersal trawl fisheries[J]. Ocean Engin, 2023, 272: 113877-113889. doi: 10.1016/j.oceaneng.2023.113877
    [39]
    YAN H, SU X Z, ZHANG H Z, et al. Design approach and hydrodynamic characteristics of a novel bionic airfoil[J]. Ocean Engin, 2020, 216: 108076-108086. doi: 10.1016/j.oceaneng.2020.108076
    [40]
    令狐克骑. 仿鲨鱼皮表面结构对翼型水动力性能影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2022: 23-46.
  • Related Articles

    [1]ZHANG Fan, CUI Mingchao, LIU Huang, YAO Chunjing, ZHANG Chen. Experimental study of flow field characteristics in tanks with different diameter-to-depth ratios[J]. South China Fisheries Science, 2025, 21(3): 15-23. DOI: 10.12131/20240290
    [2]LIU Taijin, WANG Yintao, GUO Xiaoyu. Analysis of vortex flow field characteristics in aquaculture tanks of aquaculture platform under motion-induced sloshing[J]. South China Fisheries Science, 2025, 21(3): 1-14. DOI: 10.12131/20250021
    [3]WANG Shaomin, MA Zhenhua, HU Jing, WANG Wenfei, MAO Fukao, BAI Zemin, WANG Lixian. Hydrodynamic performance of a square-type submersible net cage under combined wind, wave and current conditions[J]. South China Fisheries Science, 2025, 21(2): 1-13. DOI: 10.12131/20240245
    [4]ZHANG Chen, LIU Huang, ZHANG Chenglin, ZHANG Fan. Effect of water inflow methods on flow field and suitability for aquaculture in rectangular farming tanks[J]. South China Fisheries Science, 2024, 20(6): 121-131. DOI: 10.12131/20240192
    [5]LIU Jingbin, TANG Hao, XU Liuxiong, SUN Qiuyang, LIU Wei, YIN Liqiang, ZHANG Feng. Evaluation of scale effect on hydrodynamic force of V-shaped otter board based on CFD[J]. South China Fisheries Science, 2022, 18(5): 128-137. DOI: 10.12131/20210355
    [6]ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science, 2022, 18(4): 119-125. DOI: 10.12131/20210044
    [7]LIU Zhiqiang, XU Liuxiong, TANG Hao, HU Fuxiang, ZHOU Cheng. Hydrodynamic performance and around flow field of biplane-type otter board with different working positions[J]. South China Fisheries Science, 2020, 16(2): 87-98. DOI: 10.12131/20190221
    [8]HU Xiaoliang, WANG Xichang, LI Yulin, WANG Yifen, SHEN Jian. Numerical simulation of temperature distribution during radio frequency tempering of pollack surimi based on dielectric properties[J]. South China Fisheries Science, 2018, 14(5): 95-102. DOI: 10.3969/j.issn.2095-0780.2018.05.012
    [9]LI Jie, YAN Lei, YANG Bingzhong, ZHANG Peng. Numerical simulation on untrammeled settlement process of falling-net[J]. South China Fisheries Science, 2017, 13(4): 105-114. DOI: 10.3969/j.issn.2095-0780.2017.04.013
    [10]HU Yu, GUO Genxi, HUANG Xiaohua, TAO Qiyou, ZHANG Xiaoming. Simulation of flow field inside the net cleaning machine based on ANSYS[J]. South China Fisheries Science, 2010, 6(1): 7-11. DOI: 10.3969/j.issn.1673-2227.2010.01.002

Catalog

    Recommendations
    Hydrodynamic performance of a square-type submersible net cage under combined wind, wave and current conditions
    WANG Shaomin et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Effects of complex carbon sources on vertical distribution and exchange flux of dissolved nutrients at sediment-water interface
    LUO Yimin et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Water quality evaluation foreriocheir sinensisaquaculture ponds with different aquatic plants
    HUA Qinghong et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    A method for estimating quantity oftrachinotus ovatusin marine cage aquaculture based on high-frequency horizontal mechanical scanning sonar image
    HU Jiazhen et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Computer fluid dynamic (cfd) analysis of float and propeller design in electric hybrid waterbike
    Ika Nurjannah et al., ACTA MECHANICA MALAYSIA, 2023
    Study of hydrodynamic torque of double offset butterfly valve disc through experiment and cfd analysis
    Prakash S. a, and Naragund et al., INTERNATIONAL JOURNAL OF VEHICLE STRUCTURES AND SYSTEMS, 2021
    Aerodynamics and surrounding flow patterns of a long-span bridge girder model with triple-separated boxes
    Meng, Hao et al., PHYSICS OF FLUIDS, 2024
    An implicit-explicit second-order bdf numerical scheme with variable steps for gradient flows
    Hou, Dianming et al., JOURNAL OF SCIENTIFIC COMPUTING, 2023
    A flow feedback traffic prediction based on visual quantified features
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
    Assessment and mapping of flash flood hazard and risk at wadi yutum basin in jordan: integrating hydrological and hydraulic modeling techniques
    WATER CONSERVATION AND MANAGEMENT, 2024
    Powered by
    Article views (1032) PDF downloads (67) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return