LIU Zhiqiang, XU Liuxiong, TANG Hao, HU Fuxiang, ZHOU Cheng. Hydrodynamic performance and around flow field of biplane-type otter board with different working positions[J]. South China Fisheries Science, 2020, 16(2): 87-98. DOI: 10.12131/20190221
Citation: LIU Zhiqiang, XU Liuxiong, TANG Hao, HU Fuxiang, ZHOU Cheng. Hydrodynamic performance and around flow field of biplane-type otter board with different working positions[J]. South China Fisheries Science, 2020, 16(2): 87-98. DOI: 10.12131/20190221

Hydrodynamic performance and around flow field of biplane-type otter board with different working positions

More Information
  • Received Date: October 29, 2019
  • Revised Date: December 08, 2019
  • Accepted Date: February 14, 2020
  • Available Online: February 26, 2020
  • Otter board, an important accessory for net expansion in the single trawl, whose stability directly determines the degree of expansion of the trawl mouth and affects the catch efficiency and economic benefits. In this study, the hydrodynamic performance of the biplane-type was investigated by using the flume tank experiment and numerical simulation (Computational fluid dynamics, CFD) at different heel angles (inward, outward and tilt) and angles of attack, and the flow field and surface pressure around otter board was visualized. The results show: 1) At heel angle of 0° and angle of attack of 25°, both the lift coefficients of otter board for flume tank experiment and numerical simulation reached the maximum values (1.69 and 1.88, respectively), while both drag coefficients decreased with increasing heel angle. 2) Both the lift-to-drag ratios of model experiment and numerical simulation decreased with the increase of heel angle, and both reached the maximum values (3.27 and 3.69, respectively) when the heel inward angle was 5°. 3) The pressure center coefficient (Cpb) almost maintained stable with the change of heel angle; Cpc increased and decreased with increasing heel angle when the otter board was set to forward and backward tilting states, respectively. 4) CFD results show that the vortex at the rear of the center surface of otter board decreased with increasing heel angle. When the otter board was in inward and outward inclination states, the front end flow velocity reduction zone increased with increasing heel angle gradually. The pressure center moved toward the end chord of otter board as the heel angle increased in forward tilting state, but moved toward the lower end chord in backward tilting state. The results can provide scientific references for the studies on the stability of otter board and adjustion of fishing strategy.

  • [1]
    徐宝生, 张勋, 王明彦. 单船拖网网板的现状及发展趋势[J]. 福建水产, 2010(1): 86-90. doi: 10.3969/j.issn.1006-5601.2010.01.022
    [2]
    郭根喜, 刘同渝, 黄小华, 等. 拖网网板动力学理论研究与实践[M]. 广州: 广东科技出版社, 2008: 34-40.
    [3]
    许柳雄. 渔具理论与设计学[M]. 北京: 中国农业出版社, 2004: 132-144.
    [4]
    张勋, 王明彦, 徐宝生. 拖网网板型式、结构与性能的研究与应用进展[J]. 中国水产科学, 2004, 11(z1): 107-113. doi: 10.3321/j.issn:1005-8737.2004.z1.022
    [5]
    孙满昌. 海洋渔业技术学[M]. 北京: 中国农业出版社, 2014: 93-100.
    [6]
    MCHUGH M J, BROADHURST M K, STERLING D J, et al. Relative benthic disturbances of conventional and novel otter boards[J]. ICES J Mar Sci, 2015, 72(8): 2450-2456. doi: 10.1093/icesjms/fsv100
    [7]
    杨吝. 开缝圆型网板的水动力学特性[J]. 水产科技, 1996(2): 38-41.
    [8]
    杨吝. 双片圆型网板的水动力学特性[J]. 江西水产科技, 1996(5): 42-44.
    [9]
    SU X, LU H S, FENG B, et al. Hydrodynamic characteristics of the double-winged otter board in the deep waters of the Mauritanian Sea[J]. Chin J Oceanol Limnol, 2018, 36(4): 1417-1424. doi: 10.1007/s00343-018-7047-3
    [10]
    王明彦, 王锦浩, 张勋, 等. 立式V型曲面网板的水动力性能[J]. 水产学报, 2004, 28(3): 311-315.
    [11]
    FUKUDA K. Study on hydrodynamic characteristics of biplane type otter board [D]. Tokyo: Tokyo University of Marine Science and Technology, 1999: 1-120.
    [12]
    FUKUDA K, HU F X, TOKAI T, et al. Effects of aspect and camber ratios on hydrodynamic characteristics of biplane-type otter board[J]. Nippon Suisan Gakkaishi, 1999, 65: 860-865. doi: 10.2331/suisan.65.860
    [13]
    FUKUDA, K, MATUDA K, HU F X, et al. A model experiment on hydro-dynamic characteristics of biplane-type otter board[J]. Nippon Suisan Gakkaishi, 1997, 63: 207-212. doi: 10.2331/suisan.63.207
    [14]
    MCHUGH M J, BROADHURST M K, STERLING D J. Comparing three conventional penaeid-trawl otter boards and the new batwing design[J]. Fish Res, 2015, 167: 180-189. doi: 10.1016/j.fishres.2015.02.013
    [15]
    刘健, 黄洪亮, 陈帅, 等. 小展弦比立式曲面网板的水动力性能[J]. 水产学报, 2013, 37(11): 1742-1749.
    [16]
    SHEN X L, HU F X, KUMAZAWA T, et al. Hydrodynamic characteristics of a hyper-lift otter board with wing-end plates[J]. Fish Sci, 2015, 81(3): 433-442. doi: 10.1007/s12562-015-0873-8
    [17]
    刘圣聪, 刘佳茗. 矩形曲面网板水动力性能的数值模拟[J]. 安徽农学通报, 2017(18): 98-114.
    [18]
    XU Q C, HUANG L Y, ZHAO F F, et al. Effects of aspect ratio on the hydrodynamic performance of full-scale rectangular otter board: numerical simulation study[J]. Ocean Engin, 2017, 142: 338-347. doi: 10.1016/j.oceaneng.2017.07.007
    [19]
    XU Q C, FENG C L, HUANG L Y, et al. Parameter optimization of a double-deflector rectangular cambered otter board: numerical simulation study[J]. Ocean Engin, 2018, 162: 108-116. doi: 10.1016/j.oceaneng.2018.05.008
    [20]
    XU Q C, HUANG L Y, ZHAO F F, et al. Study on the hydrodynamic characteristics of the rectangular V-type otter board using computational fluid dynamics[J]. Fish Sci, 2017, 83(2): 181-190. doi: 10.1007/s12562-017-1065-5
    [21]
    TAKAHASHI Y, FUJIMORI Y, HU F X, et al. Design of trawl otter boards using computational fluid dynamics[J]. Fish Res, 2015, 161: 400-407. doi: 10.1016/j.fishres.2014.08.011
    [22]
    TAKAHASHI Y, FUJIMORI Y, HU F X, et al. Shape optimization for otter board using computational fluid dynamics analysis and response surface methodology[J]. Nippon Suisan Gakkaishi, 2017, 83(6): 950-960. doi: 10.2331/suisan.16-00076
    [23]
    凌桂龙. ANSYS Workbench 15.0从入门到精通[M]. 北京: 清华大学出版社, 2014: 20-60.
    [24]
    SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows[J]. Comput Fluids, 1995, 24(3): 227-238. doi: 10.1016/0045-7930(94)00032-T
    [25]
    CHEN Y L, YAO Y M, ZHANG Z M, et al. Numerical analysis of a mid-water trawl system with a 6-DOF otter board model and sea-trial verification[J]. IEEE Access, 2018, 6: 68429-68439. doi: 10.1109/ACCESS.2018.2879899
    [26]
    REITE K J, SORENSEN A J. Mathematical modeling of the hydrodynamic forces on a trawl door[J]. IEEE J Oceanic Engin, 2006, 31(2): 432-453. doi: 10.1109/JOE.2006.875098
  • Related Articles

    [1]WANG Xiaoyan, ZHOU Shengjie, WANG Yinggang, SUN Yongyue, LI Minghao, MA Zhenhua. Effects of acidification stress on antioxidant and immunity in juvenile yellowfin tuna (Thunnus albacares)[J]. South China Fisheries Science, 2024, 20(3): 85-91. DOI: 10.12131/20230216
    [2]JIANG Kui, HU Xiaojuan, XU Chuangwen, HONG Minna, LIU Xiyao, MAI Xiaoyong, CHEN Haiyi, YANG Keng. Effects of schizophyllan on growth, immunity and intestinal microflora of Litopenaeus vannamei[J]. South China Fisheries Science, 2023, 19(5): 95-103. DOI: 10.12131/20230041
    [3]BAO Yuhang, ZHANG Xinyu, YIN Shangjun, ZHANG Haiqi, XU Jiehao. Effects of Chinese herbal compound on intestinal microbiota and non-specific immune function of Pelodiscus sinensis[J]. South China Fisheries Science, 2023, 19(5): 86-94. DOI: 10.12131/20230069
    [4]XIAO Bo, ZHOU Shengjie, WANG Yinggang, FU Zhengyi, FANG Wei, YU Gang, MA Zhenhua. Effects of fermented Astragalus membranaceus on growth, digestion, immune function and ammonia nitrogen resistance of Epinephelus fuscoguttatus[J]. South China Fisheries Science, 2023, 19(2): 161-169. DOI: 10.12131/20220197
    [5]XIAO Wenfu, HU Bing, CUI Xuehai, CAO Manxia, YAO Haihang, LI Peng, YU Lijuan, YUAN Hanwen, GAO Weihua, TIAN Juan. Effects of egg product on growth performance, muscle nutrients, and intestinal microflora of Procambarus clarkii[J]. South China Fisheries Science, 2023, 19(1): 116-127. DOI: 10.12131/20220128
    [6]HUANG Jianbin, CHI Yan, ZHOU Chuanpeng, HUANG Xiaolin, HUANG Zhong, YU Wei, XUN Pengwei, WU Yang, ZHANG Yu, LIN Heizhao. Effects of dietary alginate oligosaccharide on growth performance, antioxidative capacity and immune function of juvenile Trachinotus ovatus[J]. South China Fisheries Science, 2022, 18(3): 118-128. DOI: 10.12131/20210161
    [7]YU Wei, YANG Yukai, LIN Heizhao, HUANG Xiaolin, HUANG Zhong, LI Tao, ZHOU Chuanpeng, MA Zhenhua, XUN Pengwei, YANG Changping. Effects of taurine on growth performance, digestive enzymes, antioxidant capacity and immune indices of Lateolabrax maculatus[J]. South China Fisheries Science, 2021, 17(2): 78-86. DOI: 10.12131/20200223
    [8]CHEN Jie, HE Yang, DAI Xuping, WANG Jun, QING Chuanjie, LI Rui. Histological observation and innate immune barrier study of head kidney of Pelteobagrus vachelli[J]. South China Fisheries Science, 2021, 17(1): 82-90. DOI: 10.12131/20200119
    [9]LIU Qian, JIANG Shigui, QIU Lihua, HUANG Jianhua, ZHOU Falin, YANG Qibin, JIANG Song, YANG Lishi. Immune function and expression of Toll9 receptor gene from Penaeus monodon[J]. South China Fisheries Science, 2017, 13(5): 63-71. DOI: 10.3969/j.issn.2095-0780.2017.05.009
    [10]XIAO Wei, LI Dayu, XU Yang, ZOU Zhiying, ZHU Jinglin, HAN Jue, YANG Hong. Effects of chronic external ammonia stress on growth, immunity and metabolism of juvenile GIFT tilapia (Oreochromis niloticus)[J]. South China Fisheries Science, 2015, 11(4): 81-87. DOI: 10.3969/j.issn.2095-0780.2015.04.012
  • Cited by

    Periodical cited type(5)

    1. 李瑶瑶,金圣涵,翟瑞意,李英美,李婷婷,韩玲钰. 不同海参糖肽的制备及其对鲅鱼鱼糜凝胶品质的影响. 食品科技. 2024(05): 115-124 .
    2. 魏登枭,车丹丹,陈必链,何勇锦,周志华. 三相分离法提取裂殖壶藻中油脂、蛋白质和多糖的工艺优化. 中国油脂. 2023(03): 123-129 .
    3. 牛秋云. 小麦胚芽蛋白糖基化产物抗氧化特性研究. 食品与机械. 2023(05): 32-37 .
    4. 郭浩彬,李敏杰,张陆燕,章银良. 美拉德反应优化藜麦多肽抗氧化活性的研究. 中国调味品. 2023(12): 59-68 .
    5. 董烨,张益奇,张晓頔,胡学佳,戴志远. 鳙鱼皮水解物美拉德反应产物抗氧化活性研究. 核农学报. 2022(11): 2199-2209 .

    Other cited types(2)

Catalog

    Article views (3885) PDF downloads (58) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return