Citation: | LIU Zhiqiang, XU Liuxiong, TANG Hao, HU Fuxiang, ZHOU Cheng. Hydrodynamic performance and around flow field of biplane-type otter board with different working positions[J]. South China Fisheries Science, 2020, 16(2): 87-98. DOI: 10.12131/20190221 |
Otter board, an important accessory for net expansion in the single trawl, whose stability directly determines the degree of expansion of the trawl mouth and affects the catch efficiency and economic benefits. In this study, the hydrodynamic performance of the biplane-type was investigated by using the flume tank experiment and numerical simulation (Computational fluid dynamics, CFD) at different heel angles (inward, outward and tilt) and angles of attack, and the flow field and surface pressure around otter board was visualized. The results show: 1) At heel angle of 0° and angle of attack of 25°, both the lift coefficients of otter board for flume tank experiment and numerical simulation reached the maximum values (1.69 and 1.88, respectively), while both drag coefficients decreased with increasing heel angle. 2) Both the lift-to-drag ratios of model experiment and numerical simulation decreased with the increase of heel angle, and both reached the maximum values (3.27 and 3.69, respectively) when the heel inward angle was 5°. 3) The pressure center coefficient (Cpb) almost maintained stable with the change of heel angle; Cpc increased and decreased with increasing heel angle when the otter board was set to forward and backward tilting states, respectively. 4) CFD results show that the vortex at the rear of the center surface of otter board decreased with increasing heel angle. When the otter board was in inward and outward inclination states, the front end flow velocity reduction zone increased with increasing heel angle gradually. The pressure center moved toward the end chord of otter board as the heel angle increased in forward tilting state, but moved toward the lower end chord in backward tilting state. The results can provide scientific references for the studies on the stability of otter board and adjustion of fishing strategy.
[1] |
徐宝生, 张勋, 王明彦. 单船拖网网板的现状及发展趋势[J]. 福建水产, 2010(1): 86-90. doi: 10.3969/j.issn.1006-5601.2010.01.022
|
[2] |
郭根喜, 刘同渝, 黄小华, 等. 拖网网板动力学理论研究与实践[M]. 广州: 广东科技出版社, 2008: 34-40.
|
[3] |
许柳雄. 渔具理论与设计学[M]. 北京: 中国农业出版社, 2004: 132-144.
|
[4] |
张勋, 王明彦, 徐宝生. 拖网网板型式、结构与性能的研究与应用进展[J]. 中国水产科学, 2004, 11(z1): 107-113. doi: 10.3321/j.issn:1005-8737.2004.z1.022
|
[5] |
孙满昌. 海洋渔业技术学[M]. 北京: 中国农业出版社, 2014: 93-100.
|
[6] |
MCHUGH M J, BROADHURST M K, STERLING D J, et al. Relative benthic disturbances of conventional and novel otter boards[J]. ICES J Mar Sci, 2015, 72(8): 2450-2456. doi: 10.1093/icesjms/fsv100
|
[7] |
杨吝. 开缝圆型网板的水动力学特性[J]. 水产科技, 1996(2): 38-41.
|
[8] |
杨吝. 双片圆型网板的水动力学特性[J]. 江西水产科技, 1996(5): 42-44.
|
[9] |
SU X, LU H S, FENG B, et al. Hydrodynamic characteristics of the double-winged otter board in the deep waters of the Mauritanian Sea[J]. Chin J Oceanol Limnol, 2018, 36(4): 1417-1424. doi: 10.1007/s00343-018-7047-3
|
[10] |
王明彦, 王锦浩, 张勋, 等. 立式V型曲面网板的水动力性能[J]. 水产学报, 2004, 28(3): 311-315.
|
[11] |
FUKUDA K. Study on hydrodynamic characteristics of biplane type otter board [D]. Tokyo: Tokyo University of Marine Science and Technology, 1999: 1-120.
|
[12] |
FUKUDA K, HU F X, TOKAI T, et al. Effects of aspect and camber ratios on hydrodynamic characteristics of biplane-type otter board[J]. Nippon Suisan Gakkaishi, 1999, 65: 860-865. doi: 10.2331/suisan.65.860
|
[13] |
FUKUDA, K, MATUDA K, HU F X, et al. A model experiment on hydro-dynamic characteristics of biplane-type otter board[J]. Nippon Suisan Gakkaishi, 1997, 63: 207-212. doi: 10.2331/suisan.63.207
|
[14] |
MCHUGH M J, BROADHURST M K, STERLING D J. Comparing three conventional penaeid-trawl otter boards and the new batwing design[J]. Fish Res, 2015, 167: 180-189. doi: 10.1016/j.fishres.2015.02.013
|
[15] |
刘健, 黄洪亮, 陈帅, 等. 小展弦比立式曲面网板的水动力性能[J]. 水产学报, 2013, 37(11): 1742-1749.
|
[16] |
SHEN X L, HU F X, KUMAZAWA T, et al. Hydrodynamic characteristics of a hyper-lift otter board with wing-end plates[J]. Fish Sci, 2015, 81(3): 433-442. doi: 10.1007/s12562-015-0873-8
|
[17] |
刘圣聪, 刘佳茗. 矩形曲面网板水动力性能的数值模拟[J]. 安徽农学通报, 2017(18): 98-114.
|
[18] |
XU Q C, HUANG L Y, ZHAO F F, et al. Effects of aspect ratio on the hydrodynamic performance of full-scale rectangular otter board: numerical simulation study[J]. Ocean Engin, 2017, 142: 338-347. doi: 10.1016/j.oceaneng.2017.07.007
|
[19] |
XU Q C, FENG C L, HUANG L Y, et al. Parameter optimization of a double-deflector rectangular cambered otter board: numerical simulation study[J]. Ocean Engin, 2018, 162: 108-116. doi: 10.1016/j.oceaneng.2018.05.008
|
[20] |
XU Q C, HUANG L Y, ZHAO F F, et al. Study on the hydrodynamic characteristics of the rectangular V-type otter board using computational fluid dynamics[J]. Fish Sci, 2017, 83(2): 181-190. doi: 10.1007/s12562-017-1065-5
|
[21] |
TAKAHASHI Y, FUJIMORI Y, HU F X, et al. Design of trawl otter boards using computational fluid dynamics[J]. Fish Res, 2015, 161: 400-407. doi: 10.1016/j.fishres.2014.08.011
|
[22] |
TAKAHASHI Y, FUJIMORI Y, HU F X, et al. Shape optimization for otter board using computational fluid dynamics analysis and response surface methodology[J]. Nippon Suisan Gakkaishi, 2017, 83(6): 950-960. doi: 10.2331/suisan.16-00076
|
[23] |
凌桂龙. ANSYS Workbench 15.0从入门到精通[M]. 北京: 清华大学出版社, 2014: 20-60.
|
[24] |
SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows[J]. Comput Fluids, 1995, 24(3): 227-238. doi: 10.1016/0045-7930(94)00032-T
|
[25] |
CHEN Y L, YAO Y M, ZHANG Z M, et al. Numerical analysis of a mid-water trawl system with a 6-DOF otter board model and sea-trial verification[J]. IEEE Access, 2018, 6: 68429-68439. doi: 10.1109/ACCESS.2018.2879899
|
[26] |
REITE K J, SORENSEN A J. Mathematical modeling of the hydrodynamic forces on a trawl door[J]. IEEE J Oceanic Engin, 2006, 31(2): 432-453. doi: 10.1109/JOE.2006.875098
|
[1] | SHI Juan, LIU Yong, LI Chunhou, WANG Teng, ZHAO Jinfa, SONG Xiaoyu, XIE Hongyu. Trophic niche analysis of Collichthys lucidus in Pearl River Estuary[J]. South China Fisheries Science, 2024, 20(3): 56-65. DOI: 10.12131/20240025 |
[2] | SUN Ye, LIU Yong, LI Chunhou, WU Peng, LI Yafang, SHU Liming, LIN Lin, XIAO Yayuan, TANG Guanglong. Community characteristics and influencing factors of macrobenthos in Pearl River Estuary[J]. South China Fisheries Science, 2023, 19(5): 39-47. DOI: 10.12131/20230048 |
[3] | YAN Lei, TAN Yongguang, YANG Lin, YANG Bingzhong, ZHANG Peng, CHEN Sen, LI Jie. Catch composition and diversity of gillnet fishery in the Pearl River Estuary coastal waters of the South China Sea in autumn[J]. South China Fisheries Science, 2016, 12(1): 111-119. DOI: 10.3969/j.issn.2095-0780.2016.01.015 |
[4] | SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012 |
[5] | YANG Lin, ZHANG Xufeng, TAN Yongguang, ZHANG Peng. Analysis of the catch composition of small shrimp-beam-trawl net in shallow waters of Pearl River Estuary, China[J]. South China Fisheries Science, 2008, 4(6): 70-77. |
[6] | GAO Yuan, LAI Zini, WANG Chao, PANG Shixun, WEI Taili, XIE Wenping, YANG Wanling. Community characteristics of zooplankton in Pearl River Estuary in summer of 2006[J]. South China Fisheries Science, 2008, 4(1): 10-15. |
[7] | WANG Di, LIN Zhaojin. Spatial and temporal variations of fish community structure in the Pearl River Estuary waters[J]. South China Fisheries Science, 2006, 2(4): 37-45. |
[8] | LI Zhan-dong, LIN Qin. The application of BP artificial neural networks on assessment of seawater quality at Pearl River Estuary[J]. South China Fisheries Science, 2005, 1(4): 47-54. |
[9] | YANG Mei-lan, LIN Qin, LU Xiao-yu, CAI Wen-gui. Distribution characteristics of suspended substance in the Lingdingyang water of the Pearl River Estuary[J]. South China Fisheries Science, 2005, 1(2): 51-55. |
[10] | YANG Lin, ZHANG Xufeng, ZHANG Peng, TAN Yongguang. Composition of by-catch of shrimping beam trawl in the Pearl River Estuary, China[J]. South China Fisheries Science, 2005, 1(1): 27-34. |
1. |
徐菲,徐开达,张洪亮,卢占晖,周永东,李羽如,叶莹莹,马文静,金梓慧. 浙江岱衢洋海域春秋季游泳动物群落结构及生物量粒径谱特征. 海洋与湖沼. 2025(01): 165-174 .
![]() | |
2. |
Zhisen LUO,Murong YI,Xiaodong YANG,Xiao CHEN,Jinxi WANG,Changping JIANG,Fengming LIU,Konglan LUO,Xiongbo HE,Hung-Du LIN,Bin KANG,Yunrong YAN. Checklist of marine fishes in the Beibu Gulf: fish classification, resource protection, and biodiversity challenge. Journal of Oceanology and Limnology. 2025(01): 232-247 .
![]() |
|
3. |
李诗佳,施利燕,钟俊生,赵路路. 长江口南部水域春、秋季鱼类群落结构比较. 上海海洋大学学报. 2024(01): 135-149 .
![]() | |
4. |
李淼,许友伟,孙铭帅,范江涛,李佳俊,张魁,陈作志. 拉尼娜事件前后北部湾鱼类群落结构变化研究. 南方水产科学. 2023(02): 1-11 .
![]() | |
5. |
Chenyu Song,Zhong Tu,Na Song. Discordant patterns of genetic variation between mitochondrial and microsatellite markers in Acanthogobius ommaturus across the coastal areas of China. Acta Oceanologica Sinica. 2023(04): 72-80 .
![]() |
|
6. |
王鑫,李昌文,徐加涛,李士虎,宋可心,唐佳伟,马晓娜,冯志华. 灌河口海域水生动物群落结构及分布特征. 江苏海洋大学学报(自然科学版). 2023(04): 29-41 .
![]() |