ZHANG Chen, LIU Huang, ZHANG Chenglin, ZHANG Fan. Effect of water inflow methods on flow field and suitability for aquaculture in rectangular farming tanks[J]. South China Fisheries Science, 2024, 20(6): 121-131. DOI: 10.12131/20240192
Citation: ZHANG Chen, LIU Huang, ZHANG Chenglin, ZHANG Fan. Effect of water inflow methods on flow field and suitability for aquaculture in rectangular farming tanks[J]. South China Fisheries Science, 2024, 20(6): 121-131. DOI: 10.12131/20240192

Effect of water inflow methods on flow field and suitability for aquaculture in rectangular farming tanks

More Information
  • Received Date: August 12, 2024
  • Revised Date: September 08, 2024
  • Accepted Date: October 07, 2024
  • Available Online: October 11, 2024
  • To improve the suitability for fish, we conducted a study on the hydrodynamic characteristics of the internal flow field by different water inflow methods. Firstly, we constructed a numerical model of the fish tanks in a 300 000-ton aquaculture vessel by using Computational Fluid Dynamics (CFD) technology, and validated its feasibility of the numerical method. On this basis, we analyzed the hydrodynamic characteristics such as flow velocity distribution, fluid uniformity and resistance coefficient, and evaluated the effects of the area proportion of flow velocity suitable for fishing and the state of bottom flow field on the fitness level of Pseudosciaena crocea. The results indicate that changes in the number of daily water exchange affected the flow velocity magnitude within the aquaculture tank significantly. As the number of daily exchange decreased from 16 to 10, the average flow velocity inside the tank dropped by 46.7%. Conversely, the changes in the number of inlet ports had a considerable impact on the uniformity of water flow. When the number of inlets reduced from 16 to 4, the fluid uniformity index inside the tank decreased by 18.4%. When altering the placement of inlet ports, it is crucial to pay attention to the interactions between the inflow jets. Comprehensive analysis shows that it is the most beneficial for the culture of P. crocea with 16 times of daily water change, and by evenly arranging the 16 water intakes at the cut corners of rectangular tank.

  • [1]
    张琳桓, 张青亮, 孟广玮. 基于可移动式养殖工船的新型深远海养殖产业链分析[J]. 船舶工程, 2020, 42(S02): 40-44.
    [2]
    胡方珍, 盛伟群, 王体涛. 深远海养殖装备技术现状及标准化工作建议[J]. 船舶标准化工程师, 2021, 54(5): 6-12.
    [3]
    闫国琦, 倪小辉, 莫嘉嗣. 深远海养殖装备技术研究现状与发展趋势[J]. 大连海洋大学学报, 2018, 33(1): 123-129.
    [4]
    程世明, 韩越, 金杨, 等. 养殖工船海上旁靠补给系统设计及水动力性能[J]. 船舶工程, 2024, 46(5): 1-5, 32.
    [5]
    房熊, 徐志强. 深远海养殖工船的优势及创新技术[J]. 广东造船, 2023, 42(5): 49-52. doi: 10.3969/j.issn.2095-6622.2023.05.013
    [6]
    张千, 刘世佳, 刘亮清, 等. 我国深远海养殖设施装备发展现状与趋势[J]. 中国渔业经济, 2023, 41(3): 71-77. doi: 10.3969/j.issn.1009-590X.2023.03.009
    [7]
    崔铭超, 鲍旭腾, 王庆伟. 我国深远海养殖设施装备发展研究[J]. 船舶工程, 2021, 43(4): 31-38.
    [8]
    顾海涛, 李明爽, 刘兴国. 水产养殖机械发展现状、问题与挑战及发展建议[J]. 中国水产, 2022(8): 42-46. doi: 10.3969/j.issn.1002-6681.2022.8.zhongguosc202208018
    [9]
    崔铭超, 金娇辉, 黄温赟. 养殖工船系统构建与总体技术探讨[J]. 渔业现代化, 2019, 46(2): 61-66. doi: 10.3969/j.issn.1007-9580.2019.02.010
    [10]
    ELALOUF H, KASPI M, ELALOUF A , et al. Optimal operation policy for a sustainable recirculation aquaculture system for ornamental fish: simulation and response surface methodology[J]. Comput Oper Res, 2018, 89: 230-240.
    [11]
    FARGHALLY M H, ATIA M D, EL-MADANY T H, et al. Control methodologies based on geothermal recirculating aquaculture system[J]. Energy, 2014: 78826-78833.
    [12]
    方舟, 徐红昌, 戴锦阳. 横摇运动下养殖工船多液舱流场特性数值分析[J]. 船海工程, 2021, 50 (6): 41-45, 50.

    (6): 41-45, 50.
    [13]
    苑中排, 王富超, 刘一, 等. 基于CFD的液舱晃荡与船舶耦合运动数值模拟[J]. 江苏船舶, 2022, 39(3): 1-5.
    [14]
    崔铭超, 王靖, 郭晓宇. 横摇运动下养殖工船水环境流场特性数值分析[J]. 中国造船, 2020, 61(3): 204-215. doi: 10.3969/j.issn.1000-4882.2020.03.022
    [15]
    GUO X Y, LI Z S, CUI M C, et al. Numerical investigation on flow characteristics of water in the fish tank on a force-rolling aquaculture platform[J]. Ocean Eng, 2020, 217: 107936. doi: 10.1016/j.oceaneng.2020.107936
    [16]
    高瑞, 崔铭超, 王庆伟, 等. 养殖水舱横摇适鱼性数值分析[J]. 船舶工程, 2020, 42(12): 35-42, 47.
    [17]
    秦康, 崔铭超, 刘晃, 等. 基于FLOW-3D的船载舱养流场特性分析[J]. 渔业现代化, 2022, 49(5): 35-44.
    [18]
    吉泽坤, 刘晃, 崔铭超, 等. 颗粒特性对矩形养殖舱中颗粒物去除效果的影响[J]. 上海海洋大学学报, 2023, 32(5): 1068-1079. doi: 10.12024/jsou.20230604226
    [19]
    赵玲菲, 薛博茹, 赵云鹏. 折角比对养殖工船舱内流场特性的影响[J]. 渔业现代化, 2024, 51(2): 22-31. doi: 10.3969/j.issn.1007-9580.2024.02.003
    [20]
    KLEBERT P, VOLENT Z, ROSTEN T. Measurement and simulation of the three-dimensional flow pattern and particle removal efficiencies in a large floating closed sea cage with multiple inlets and drains[J]. Aquac Eng, 2018, 80: 11-21. doi: 10.1016/j.aquaeng.2017.11.001
    [21]
    OCA J, MASALÓ I. Design criteria for rotating flow cells in rectangular aquaculture tanks[J]. Aquac Eng, 2006, 36(1): 36-44.
    [22]
    于林平, 薛博茹, 任效忠, 等. 单进水管结构对单通道矩形圆弧角养殖池水动力特性的影响研究[J]. 大连海洋大学学报, 2020, 35(1): 134-140.
    [23]
    GORLE J, TERJESEN B, SUMMERFELT S T. Hydrodynamics of Atlantic salmon culture tank: effect of inlet nozzle angle on the velocity field[J]. Comput Electron Agric, 2019, 158: 79-91. doi: 10.1016/j.compag.2019.01.046
    [24]
    CUI M C, LI Z S, ZHANG C L, et al. Statistical investigation into the flow field of closed aquaculture tanks aboard a platform under periodic oscillation[J]. Ocean Eng, 2022, 248: 110677. doi: 10.1016/j.oceaneng.2022.110677
    [25]
    ZHANG J, ZHANG Z H, CHE X, et al. Hydrodynamics of waste collection in a recirculating aquaculture tank with different numbers of inlet pipes[J]. Aquac Eng, 2023, 101: 102324. doi: 10.1016/j.aquaeng.2023.102324
    [26]
    HU J J, ZHANG H W, WU L H, et al. Investigation of the inlet layout effect on the solid waste removal in an octagonal aquaculture tank[J]. Front Mar Sci, 2022, 103: 5794.
    [27]
    朱放, 桂福坤, 胡佳俊 , 等. 进水管设置角度对圆形循环水养殖池自清洗能力的影响[J]. 水产学报, 2024, 48(3): 174-183.
    [28]
    王银涛, 李志松, 郭晓宇, 等. 养殖工船养舱流场数值仿真与特性分析[J]. 渔业现代化, 2022, 49(5): 24-34.
    [29]
    GORLE J, TERJESEN B, SUMMERFELT S. Influence of inlet and outlet placement on the hydrodynamics of culture tanks for Atlantic salmon[J]. Int J Mechanical Sci, 2020, 188: 105944. doi: 10.1016/j.ijmecsci.2020.105944
    [30]
    OCA J, MASALÓ I. Flow pattern in aquaculture circular tanks: influence of flow rate, water depth, and water inlet & outlet features[J]. Aquac Eng, 2013, 52: 65-72. doi: 10.1016/j.aquaeng.2012.09.002
    [31]
    任效忠, 薛博茹, 姜恒志, 等. 双进水管系统对单通道矩形圆弧角养殖池水动力特性影响的数值研究[J]. 海洋环境科学, 2021, 40(1): 50-56. doi: 10.12111/j.mes.20190234
    [32]
    LI Z S, GUO X Y, CUI M C. Sensitive analyses of flow property to turbulence model in swirls simulation within aquaculture tanks[J]. Ocean Eng, 2024, 291: 116425. doi: 10.1016/j.oceaneng.2023.116425
    [33]
    XUE B R, ZHAO Y P, BI C W, et al. Investigation of flow field and pollutant particle distribution in the aquaculture tank for fish farming based on computational fluid dynamics[J]. Comput Electron Agric, 2022, 200: 107243. doi: 10.1016/j.compag.2022.107243
    [34]
    BURROWS R E, CHENOWETH H H. The rectangular circulating rearing pond[J]. Prog Fish Cult, 1970, 32(2): 67-80. doi: 10.1577/1548-8640(1970)32[67:TRCRP]2.0.CO;2
    [35]
    LI Z S, GUO X Y, CUI M C. Numerical investigation of flow characteristics in a rearing tank aboard an aquaculture vessel[J]. Aquac Eng, 2022, 98: 102272. doi: 10.1016/j.aquaeng.2022.102272
    [36]
    吴飞飞, 王萍, 桂福坤, 等. 大黄鱼续航时间和临界游泳速度的初步研究[J]. 渔业现代化, 2014, 41(4): 29-33. doi: 10.3969/j.issn.1007-9580.2014.04.007
    [37]
    张成林, 张宇雷, 吴凡, 等. 基于CFD模拟及PIV技术的鱼池流场分析与优化[J]. 渔业现代化, 2022, 49(2): 25-33. doi: 10.3969/j.issn.1007-9580.2022.02.004
    [38]
    张俊, 高阳, 陈聪聪, 等. 工厂化循环水养殖池水动力学研究进展[J]. 上海海洋大学学报, 2023, 32(5): 903-910.

Catalog

    Article views (120) PDF downloads (28) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return