ZHANG Pingping, LI Zherui, SONG Huaiying, CAI Huiwen, XIA Fengfeng. AHP-based evaluation index system on site selection for offshore cage culture[J]. South China Fisheries Science, 2023, 19(4): 1-9. DOI: 10.12131/20220253
Citation: ZHANG Pingping, LI Zherui, SONG Huaiying, CAI Huiwen, XIA Fengfeng. AHP-based evaluation index system on site selection for offshore cage culture[J]. South China Fisheries Science, 2023, 19(4): 1-9. DOI: 10.12131/20220253

AHP-based evaluation index system on site selection for offshore cage culture

More Information
  • Received Date: September 20, 2022
  • Revised Date: March 07, 2023
  • Accepted Date: April 10, 2023
  • Available Online: April 12, 2023
  • Planning and selecting appropriate locating cage culture areas are essential for improving economic benefits and promoting the sustainable development of cage culture industry. However, several factors affecting cage culture including marine environment, production management and facility safety, which makes it a complex and multifactor decision-making process. Thus, developing an index system to evaluate the impact on the location of offshore cage culture is important. This paper employs the analytic hierarchy process (AHP) to construct an index system model for offshore cage culture site selection. The model includes three criteria layers and fourteen index layers, and we quantitatively analyzed the relative importance of each criteria layer and index layer based on expert judgment. Natural factors were the most important indicators in the criteria layer, followed by restrictive factors and finally social factors. Among the fourteen secondary indicators, water quality was the most significant, while food supply was the least. The AHP-based evaluation index system for offshore cage culture site selection can assess the importance of various factors accurately. The findings are beneficial for arranging offshore cage culture area appropriately, selecting regions suitable for offshore cage culture, and providing guidelines for optimizing and revising marine functional zoning.
  • [1]
    李文蕾, 李淑翠, 李达, 等. 我国海水网箱养殖业的现状与前景分析[J]. 科技资讯, 2018, 12: 237, 239. doi: 10.16661/j.cnki.1672-3791.2018.12.237
    [2]
    农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 21.
    [3]
    农业部渔业局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2000: 24.
    [4]
    FALCONER L, TELFER T C, ROSS L G. Investigation of a novel approach for aquaculture site selection[J]. J Environ Manage, 2016, 181: 791-804. doi: 10.1016/j.jenvman.2016.07.018
    [5]
    石建高, 王鲁民, 徐君卓, 等. 深水网箱选址初步研究[J]. 现代渔业信息, 2008, 23(2): 9-12, 22.
    [6]
    ROSS L G, FALCONER L L, MENDOZA A C, et al. Spatial modelling for freshwater cage location in the Presa Adolfo Mateos Lopez (El Infiernillo), Michoacán, México[J]. Aquac Res, 2011, 42(6): 797-807. doi: 10.1111/j.1365-2109.2010.02689.x
    [7]
    林勇, 刘述锡, 关道明, 等. 基于GIS的虾夷扇贝养殖适宜性综合评价——以北黄海大小长山岛为例[J]. 生态学报, 2014, 34(20): 5984-5992.
    [8]
    RADIARTA I N, SAITOH S I, MIYAZONO A. GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan[J]. Aquaculture, 2008, 284(1/2/3/4): 127-135.
    [9]
    LONGDILL P C, HEALY T R, BLACK K P. An integrated GIS approach for sustainable aquaculture management area site selection[J]. Ocean Coast Manage, 2008, 51(8/9): 612-624.
    [10]
    SHIH Y C. Integrated GIS and AHP for marine aquaculture site selection in Penghu Cove in Taiwan[J]. J Coast Zone Manag, 2017, 20(1): 1-6.
    [11]
    于谨凯, 于高燕. 基于空间多标准分析的海水养殖空间布局优化标准研究[J]. 科技管理研究, 2017, 37: 246-252. doi: 10.3969/j.issn.1000-7695.2017.23.036
    [12]
    胡昱, 郭根喜, 汤涛林, 等. 基于MCGS的深水网箱自动投饵远程控制系统的设计[J]. 渔业科学进展, 2010, 31(6): 110-115. doi: 10.3969/j.issn.1000-7075.2010.06.016
    [13]
    刘吉伟, 王宏策, 魏鸿磊. 深水网箱养殖自动投饵机控制系统设计[J]. 机电工程技术, 2018, 47: 145-148. doi: 10.3969/j.issn.1009-9492.2018.03.040
    [14]
    邓素芳, 杨有泉, 陈敏. 全自动饵料精量投喂装置的研究[J]. 农机化研究, 2010, 32: 103-105, 109. doi: 10.3969/j.issn.1003-188X.2010.05.029
    [15]
    郭根喜, 陶启友, 黄小华, 等. 深水网箱养殖装备技术前沿进展[J]. 中国农业科技导报, 2011, 13: 44-49. doi: 10.3969/j.issn.1008-0864.2011.01.07
    [16]
    桂福坤, 王萍, 吴常文. 适应条件对鱼类续航游泳能力的影响[J]. 水产学报, 2010, 34(8): 1227-1235.
    [17]
    FALCONER L, HUNTER D C, SCOTT P C, et al. Using physical environmental parameters and cage engineering design within GIS-based site suitability models for marine aquaculture[J]. Aquac Environ Interac, 2013, 4(3): 223-237. doi: 10.3354/aei00084
    [18]
    邢聪聪, 赵蓓, 刘娜娜, 等. 我国海洋资源环境承载力评价指标体系和评价方法[J]. 海洋开发与管理, 2019, 36: 33-35.
    [19]
    邱明, 张燕, 隋传国, 等. 基于GIS的深水网箱养殖适宜性评价——以长海县为例[J]. 渔业研究, 2018, 40(6): 449-457.
    [20]
    READ P, FERNANDES T. Management of environmental impacts of marine aquaculture in Europe[J]. Aquaculture, 2003, 226(1/2/3/4): 139-163.
    [21]
    廖静. 广东深水网箱: 拓展海水养殖新空间[J]. 海洋与渔业, 2017(7): 34-35.
    [22]
    KLAOUDATOS S D, SMITH J, BOGDANOS K, et al. Assessment of site specific benthic impact of floating cage farming in the eastern Hios island, Eastern Aegean Sea, Greece[J]. J Exp Mar Biol Ecol, 2006, 338(1): 96-111. doi: 10.1016/j.jembe.2006.07.002
    [23]
    高勤峰, 张恭, 董双林. 网箱养殖生态学研究进展[J]. 中国海洋大学学报(自然科学版), 2019, 49: 7-17. doi: 10.16441/j.cnki.hdxb.20180350
    [24]
    徐琰斐, 徐皓, 刘晃, 等. 中国深远海养殖发展方式研究[J]. 渔业现代化, 2021, 48: 9-15. doi: 10.3969/j.issn.1007-9580.2021.02.002
    [25]
    周晓林, 姬广闻, 焦仁育, 等. 网箱养鱼自动投饵机的设计与应用[J]. 淡水渔业, 2003, 33: 36-37. doi: 10.3969/j.issn.1000-6907.2003.06.012
    [26]
    狄乾斌, 韩旭. 国土空间规划视角下海洋空间规划研究综述与展望[J]. 中国海洋大学学报(社会科学版), 2019(5): 59-68.
    [27]
    AGUILAR-MANJARREZ J, KAPTESTY J, SOTO D. The potential of spatial planning tools to support the ecosystem approach to aquaculture[R]. Rome: FAO, 2010.
    [28]
    童英华, 冯忠岭, 张占莹. 基于AHP的雾霾影响因素评价分析[J]. 西南师范大学学报(自然科学版), 2020, 45(3): 87-94.
    [29]
    ELIF N E, İSMAIL E. A study on shopping malls performance criterias analysis using AHP method[J]. J Polytech, 2019, 23(1): 85-95.
    [30]
    KAPETSKY J M, HILL J M, WORTHY L D. A geographical information system for catfish farming development[J]. Aquaculture, 1988, 68(4): 311-320. doi: 10.1016/0044-8486(88)90245-1
    [31]
    洪志国, 李焱, 范植华, 等. 层次分析法中高阶平均随机一致性指标(RI)的计算[J]. 计算机工程与应用, 2002, 38(12): 4. doi: 10.3321/j.issn:1002-8331.2002.12.017
    [32]
    曹索贝, 杨荣美. “双碳”目标下构建甘肃电力行业碳审计评价指标体系——基于DSR-AHP模型分析[J]. 陇东学院学报, 2022, 33: 34-39. doi: 10.3969/j.issn.1674-1730.2022.05.008
    [33]
    李彦平, 刘大海, 姜伟, 等. 国土空间规划视角下海洋空间用途管制的关键问题思考[J]. 自然资源学报, 2022, 37: 895-909.
    [34]
    农昀. 国土空间规划视角下的海洋空间规划编制思考[C]//2020/2021中国城市规划年会暨2021中国城市规划学术季. 成都: 中国城市规划学会, 2021: 86-92.
    [35]
    房卓, 沈忱, 徐杏, 等. 基于层次分析法的汕头港内陆港选址研究[J]. 水运工程, 2020(12): 70-75. doi: 10.3969/j.issn.1002-4972.2020.12.012
    [36]
    ALI H. A systematic bibliometric analysis of the analytic hierarchy process from 1980 to 2020[J]. Int J Bibliometrics Business Manage, 2022, 2(2): 148-169. doi: 10.1504/IJBBM.2022.125988
    [37]
    江海浩, 周书葵, 陈朝猛, 等. 基于改进DRASTIC模型、GIS和层次分析法(AHP)的地下水U(VI)污染风险评价[J]. 环境工程, 2015, 33(3): 113-117, 130.
  • Related Articles

    [1]LIN Liqun, ZHANG Yaoming, LIU Ping, XU Zhiqiang, CUI Mingchao. Influencing factors of gas-liquid two-phase flow in oxygenation speece cone of aquaculture tanks[J]. South China Fisheries Science, 2025, 21(3): 36-43. DOI: 10.12131/20240224
    [2]ZHANG Song, WANG Jianguo, CHEN Xiaoqian, GUO Fang, YE Xiao, CHEN Xiaoxuan, WU Zefeng, ZHANG Min. Research on phytoplankton community structure and its influencing factors in mangrove wetlands of Futian, Shenzhen[J]. South China Fisheries Science, 2025, 21(2): 70-80. DOI: 10.12131/20240184
    [3]WANG Jiawen, LU Jie, YAO Tuo, YE Lingtong, WANG Jiangyong. Effects of environmental factors and external stimulus on immune indexes of Crassostrea hongkongensis[J]. South China Fisheries Science, 2021, 17(4): 18-26. DOI: 10.12131/20210051
    [4]LI Yuefei, CHEN Weitao, XIA Yuguo, YANG Jiping, ZHU Shuli, LI Xinhui. Selection of artificial fish nest material and influencing factors of implementation effects[J]. South China Fisheries Science, 2020, 16(2): 21-28. DOI: 10.12131/20190198
    [5]LI Xin, LAI Zini, YANG Wanling, WANG Chao. Water quality evaluation of Pearl River Delta based on environmental factors and phytoplankton[J]. South China Fisheries Science, 2019, 15(5): 25-34. DOI: 10.12131/20190020
    [6]MA Qingnan, DONG Zaijie, ZHU Wenbin, SU Shengyan, ZHANG Ning, YUAN Xinhua, YANG Hong. Comparison between single factor design and orthogonal design to optimize reaction system for TRAP markers in tilapia[J]. South China Fisheries Science, 2013, 9(1): 28-34. DOI: 10.3969/j.issn.2095-0780.2013.01.005
    [7]LIU Huang, GUAN Chong-wu, NI Qi, SONG Hong-qiao, HU Bo-cheng. Analysis of factors of water treatment with biofilm sequence batch reactor in recirculating aquaculture systems[J]. South China Fisheries Science, 2008, 4(4): 55-59.
    [8]ZHANG Wei, LI Chunhou, JIA Xiaoping, CHEN Peimao, FANG Liang. A review on influential factors of fouling organisms on artificial reef[J]. South China Fisheries Science, 2008, 4(1): 64-68.
    [9]CHENG Fei, YE Wei, YE Fuliang, LIU Bo. The establishment of AFLP analysis system in research of armorhead catfish, Cranoglanis bouderius[J]. South China Fisheries Science, 2007, 3(4): 46-51.
    [10]TAI Jian-ming. The assessments for Chaohu Lake fisheries eco-environment by analytic hierarchy process[J]. South China Fisheries Science, 2005, 1(5): 10-17.
  • Cited by

    Periodical cited type(5)

    1. 申亚阳,杨铿,马红玲,冯娟,苏友禄,郭志勋. 广东沿海地区拟穴青蟹呼肠孤病毒和双顺反子病毒-1的分子流行病学调查. 生态科学. 2017(01): 17-24 .
    2. 崔亚婷,倪军,马红玲,许海东,冯娟,申亚阳,郭志勋. 青蟹双顺反子病毒-1原位杂交检测方法的建立与应用. 广东农业科学. 2015(11): 130-134+193 .
    3. 李淑娟,马洪雨,马春艳,蒋伟,冯娜娜,徐真,刘月星,乔振国,马凌波. AFLP分子标记在拟穴青蟹子一代家系中的遗传规律分析. 生物技术通报. 2013(11): 123-129 .
    4. 宋忠魁,李梦芸,聂振平,孙奉玉,赵鹏,苏琼. 北部湾拟穴青蟹(Scylla paramamosain)群体遗传结构及其扩张分析. 海洋与湖沼. 2012(04): 828-836 .
    5. 宋忠魁,孙奉玉,李梦芸,赵鹏,聂振平,苏琼. 北部湾6个拟穴青蟹群体遗传多样性的ISSR分析. 生态学杂志. 2012(10): 2585-2590 .

    Other cited types(4)

Catalog

    Recommendations
    Influence of miniature temperature-depth recorder (tdr-2050) on hook depth of tuna longline fishing hooks
    SONG Liming et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Research on fish feeding intensity classification model based on axial feature calibration and temporal segment network
    XU Bo et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Study on diurnal and nocturnal variation of fish resources in marine ranching by fixed-point monitoring based on acoustic technology
    CHENG Gao et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    A method for estimating quantity oftrachinotus ovatusin marine cage aquaculture based on high-frequency horizontal mechanical scanning sonar image
    HU Jiazhen et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Comparative analysis and countermeasures on standards of offshore aquaculture facilities#br##br#
    WU Shanshan et al., FISHERY MODERNIZATION, 2024
    Design and study of water-based feeding machine for deep-sea cage culture
    ZHANG Shizhong et al., FISHERY MODERNIZATION, 2024
    Predicting water quality index (wqi) by feature selection and machine learning: a case study of an kim hai irrigation system
    Lap, Bui Quoc et al., ECOLOGICAL INFORMATICS, 2023
    A novel hybrid bpnn model based on adaptive evolutionary artificial bee colony algorithm for water quality index prediction
    Chen, Lingxuan et al., ECOLOGICAL INDICATORS, 2023
    Optimization and validation of the knowledge-based traceability system for quality control in fish waterless live transportation
    FOOD CONTROL
    A pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop
    EXPERT SYSTEMS WITH APPLICATIONS, 2022
    Powered by
    Article views (424) PDF downloads (74) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return