LI Yuefei, CHEN Weitao, XIA Yuguo, YANG Jiping, ZHU Shuli, LI Xinhui. Selection of artificial fish nest material and influencing factors of implementation effects[J]. South China Fisheries Science, 2020, 16(2): 21-28. DOI: 10.12131/20190198
Citation: LI Yuefei, CHEN Weitao, XIA Yuguo, YANG Jiping, ZHU Shuli, LI Xinhui. Selection of artificial fish nest material and influencing factors of implementation effects[J]. South China Fisheries Science, 2020, 16(2): 21-28. DOI: 10.12131/20190198

Selection of artificial fish nest material and influencing factors of implementation effects

More Information
  • Received Date: October 09, 2019
  • Revised Date: December 02, 2019
  • Accepted Date: December 24, 2019
  • Available Online: December 27, 2019
  • To determine the optimal artificial fish nest material, and to promote the restoration technology of spawning grounds for fish species with adhesive eggs, we had made fish nests with six kinds of materials (Arundo donax, Miscanthus sp., Pennisetum purpureum, Livistona chinensis, simulation aquatic plants and nylon mesh) at Zhaoqing section in Xijiang River from March to May in 2019, and studied the effects of materials and environmental factors on the implementation of fish nests. Common carps (Cyprinus carpio) had strong preference for adhesion medium, and Arundo donax was the best material for making fish nests, since the eggs adhesion ratio and the number of eggs in each nest were significantly higher for A. donax than for the other materials (P<0.05). The eggs adhesion ratio and the number of eggs decreased with the increase of days of entering water. The principal component analysis reveals that days of entering water are the most important influencing factor on the implementation effect. The increase of discharge and rise of water level can promote common carps to gather to nests and lay eggs, but weather condition had little effect. Besides, we discussed the effects of implement time and location.

  • [1]
    GÖTHE E, DEGERMAN E, SANDIN L, et al. Flow restoration and the impacts of multiple stressors on fish communities in regulated rivers[J]. J Appl Eco, 2019, 57(6): 1687-1702.
    [2]
    董哲仁, 孙东亚, 彭静. 河流生态修复理论技术及其应用[J]. 水利水电技术, 2009, 40(1): 4-9, 28. doi: 10.3969/j.issn.1000-0860.2009.01.002
    [3]
    徐菲, 王永刚, 张楠, 等. 河流生态修复相关研究进展[J]. 生态环境学报, 2014, 23(3): 515-520. doi: 10.3969/j.issn.1674-5906.2014.03.022
    [4]
    李捷, 李新辉, 潘峰, 等. 连江西牛鱼道运行效果的初步研究[J]. 水生态学杂志, 2013, 34(4): 53-57. doi: 10.3969/j.issn.1674-3075.2013.04.012
    [5]
    谭细畅, 黄鹤, 陶江平, 等. 长洲水利枢纽鱼道过鱼种群结构[J]. 应用生态学报, 2015, 26(5): 1548-1552.
    [6]
    WILKES M A, MCKENZIE M, WEBB J A. Fish passage design for sustainable hydropower in the temperate Southern Hemisphere: an evidence review[J]. Rev Fish Biol Fish, 2018, 28: 117-135. doi: 10.1007/s11160-017-9496-8
    [7]
    BAN X, CHEN S, PAN B, et al. The eco-hydrologic influence of the Three Gorges Reservoir on the abundance of larval fish of four carp species in the Yangtze River, China[J]. Ecohydrology, 2017, 10(1): e1763. doi: 10.1002/eco.1763
    [8]
    TAO J, YANG Z, CAI Y, et al. Spatiotemporal response of pelagic fish aggregations in their spawning grounds of middle Yangtze to the flood process optimized by the Three Gorges Reservoir operation[J]. Ecol Eng, 2017, 103: 86-94. doi: 10.1016/j.ecoleng.2017.03.002
    [9]
    XU W, QIAO Y, CHEN X J, et al. Spawning activity of the four major Chinese carps in the middle mainstream of the Yangtze River, during the Three Gorges Reservoir operation period, China[J]. J Appl Ichthyol, 2015, 31(5): 846-854. doi: 10.1111/jai.12771
    [10]
    钟大森, 王芳, 王春生, 等. 不同密度下的鲤鱼扰动作用对沉积物-水界面硝化、反硝化和氨化速率的影响[J]. 水生生物学报, 2013, 37(6): 1103-1111.
    [11]
    HENNEN M J, BROWN M L. Movement and spatial distribution of common carp in a South Dakota glacial lake system: implications for management and removal[J]. N Am J Fish Manag, 2014, 34(6): 1270-1281. doi: 10.1080/02755947.2014.959674
    [12]
    李云涛, 郭美玉, 詹诚, 等. 人工鱼巢渔业资源增殖效应研究进展[J]. 淡水渔业, 2018, 48(04): 58-62. doi: 10.3969/j.issn.1000-6907.2018.04.009
    [13]
    ZHOU L, GUO D, ZENG L, et al. The structuring role of artificial structure on fish assemblages in a dammed river of the Pearl River in China[J/OL]. [2018-4-30](2019-10-25). Aquat Living Resour, https://doi.org/10.1051/alr/2018003.
    [14]
    张伟, 李纯厚, 贾晓平, 等. 人工鱼礁附着生物影响因素研究进展[J]. 南方水产, 2008, 4(1): 64-68.
    [15]
    梁君, 王伟定, 潘国良, 等. 朱家尖人工鱼礁区鱼类和大型无脊椎动物群落结构变动初探[J]. 南方水产, 2010, 6(4): 13-19.
    [16]
    安徽省巢湖地区水产资源调查组. 巢湖鲤鱼的繁殖及人工鱼巢的效果观察报告[J]. 动物学杂志, 1981(2): 14-17.
    [17]
    祖国掌, 汪敦铭, 李安全. 响洪甸水库大规模人工鱼巢增殖效果的检测初报[J]. 水库渔业, 1985(4): 45-47.
    [18]
    李天才, 刘中菊, 郑秋松, 等. 嘉陵江北碚江段人工鱼巢增殖效果调查[J]. 淡水渔业, 2019, 49(1): 57-61. doi: 10.3969/j.issn.1000-6907.2019.01.010
    [19]
    潘澎, 李跃飞, 李新辉. 西江人工鱼巢增殖鲤鱼效果评估[J]. 淡水渔业, 2016, 46(6): 45-49. doi: 10.3969/j.issn.1000-6907.2016.06.008
    [20]
    许品诚, 吉英泉, 陈文海, 等. 人造鱼巢试验[J]. 水产科技情报, 1983(6): 30-32.
    [21]
    谭细畅, 李新辉, 林建志, 等. 珠江肇庆江段鲤早期发育形态及其补充群体状况[J]. 大连水产学院学报, 2009, 24(2): 125-129.
    [22]
    蒋晓辉, 赵卫华, 张文鸽. 小浪底水库运行对黄河鲤鱼栖息地的影响[J]. 生态学报, 2010, 30(18): 4940-4947.
    [23]
    阮瑞, 张燕, 沈子伟, 等. 三峡消落区鱼卵、仔稚鱼种类的鉴定及分布[J]. 中国水产科学, 2017, 24(6): 1307-1314.
    [24]
    张志广, 梁瑞峰, 龙启建, 等. 基于历史水文资料的华南鲤产卵场水力参数适宜度分析[J]. 四川大学学报 (工程科学版), 2014, 46(6): 36-41.
    [25]
    TAYLOR A H, TRACEY S R, HARTMANN K, et al. Exploiting seasonal habitat use of the common carp, Cyprinus carpio, in a lacustrine system for management and eradication[J]. Mar Freshw Res, 2012, 63(7): 587-597. doi: 10.1071/MF11252
    [26]
    广西壮族自治区水产实验场. 鲤鱼产卵场和鲤鱼孵化鱼巢材料[J]. 广西农业科学, 1959(9): 24-25.
    [27]
    张堂林. 人工鱼巢试验[J]. 人与生物圈, 2016(3): 30-31. doi: 10.3969/j.issn.1009-1661.2016.03.008
    [28]
    朱文锦, 介子林, 胡亚东, 等. 人工鱼巢作为黄河鱼类增殖措施试验研究[J]. 河南水产, 2012(2): 29-30.
    [29]
    赵从钧, 汪留全, 沈新玉. 加州鲈亲鱼对不同材料和不同深度的人工鱼巢的适应性试验[J]. 淡水渔业, 1995, 25(6): 10-11.
    [30]
    ADAMEK Z, PARDO M A, VILIZZI L, et al. Successful reproduction of common carp Cyprinus carpio in irrigation waterways[J]. Fish Manag Ecol, 2015, 22(4): 279-285. doi: 10.1111/fme.12123
    [31]
    BRAMBURGER A J, MOIR K E, HICKEY M B C. Preferential incorporation of dark, coloured materials into nests by a mound-nesting stream cyprinid[J]. J Fish Biol, 2018, 93(4): 719-722. doi: 10.1111/jfb.13741
    [32]
    BICE C M, ZAMPATTI B P. Engineered water level management facilitates recruitment of non-native common carp, Cyprinus carpio, in a regulated lowland river[J]. Ecol Eng, 2011, 37(11): 1901-1904. doi: 10.1016/j.ecoleng.2011.06.046
    [33]
    BAJER P G, SULLIVAN G, SORENSEN P W. Effects of a rapidly increasing population of common carp on vegetative cover and waterfowl in a recently restored Midwestern shallow lake[J]. Hydrobiologia, 2009, 632(1): 235-245. doi: 10.1007/s10750-009-9844-3
    [34]
    BADIOU P H J, GOLDSBOROUGH L G. Ecological impacts of an exotic benthivorous fish, the common carp (Cyprinus carpio L.), on water quality, sedimentation, and submerged macrophyte biomass in wetland mesocosms[J]. Hydrobiologia, 2015, 755(1): 107-121. doi: 10.1007/s10750-015-2220-6
    [35]
    WEBER M J, BROWN M L. Biomass-dependent effects of age-0 common carp on aquatic ecosystems[J]. Hydrobiologia, 2015, 742(1): 71-80. doi: 10.1007/s10750-014-1966-6
  • Related Articles

    [1]ZHONG Zhanyou, DENG Hong, KOU Chunni, CHEN Weitao, WU Zhi, LI Yuefei, XIA Yuguo, LI Huifeng, LI Jie, ZHU Shuli. Research on fish diversity in Xijiang Rare Fish Provincial Nature Reserve based on environmental DNA technology[J]. South China Fisheries Science. DOI: 10.12131/20240173
    [2]WANG Dongwei, CHEN Yongjin, FANG Di'an, ZHOU Yanfeng. Ecological health assessment of Cyprinus carpio and Leiocassis longirostris national aquatic germplasm resources reserve in Huaihe River[J]. South China Fisheries Science, 2023, 19(1): 30-38. DOI: 10.12131/20220109
    [3]WANG Teng, LIU Yong, QUAN Qiumei, LIN Lin, XIAO Yayuan, LI Chunhou, LI Hong. Community structure characteristics of zooplankton in main freshwater rivers of Jiangmen City, Guangdong Province[J]. South China Fisheries Science, 2021, 17(4): 9-17. DOI: 10.12131/20210019
    [4]PENG Min, HAN Yaoquan, WANG Dapeng, SHI Jun, WU Weijun, LI Yusen, LEI Jianjun, HE Anyou. Genetic diversity analysis of Ptychidio jordani in Xijiang River flowing through Guangxi Province based on mitochondrial Cytb gene sequence[J]. South China Fisheries Science, 2020, 16(5): 10-18. DOI: 10.12131/20200041
    [5]KUANG Tianxu, SHUAI Fangmin, CHEN Weitao, LI Xinhui. Genetic diversity and population structure of Carassius auratus in Xijiang River[J]. South China Fisheries Science, 2018, 14(5): 29-35. DOI: 10.3969/j.issn.2095-0780.2018.05.004
    [6]XU Tianzhen, LI Xinhui, LI Yuefei, YANG Jiping, WU Zhi, ZHU Shuli, LI Jie. Status of early resources in Yujiang Jinling River section[J]. South China Fisheries Science, 2018, 14(2): 19-25. DOI: 10.3969/j.issn.2095-0780.2018.02.003
    [7]WU Zhi, LI Xinhui, LI Jie, CHEN Fangcan, ZHU Shuli. Acoustic survey of fish resources in Yantan Reservoir in the Red River[J]. South China Fisheries Science, 2017, 13(3): 20-25. DOI: 10.3969/j.issn.2095-0780.2017.03.003
    [8]SHUAI Fangmin, LI Zhiquan, LIU Guowen, LI Xinhui, LI Yuefei, YANG Jiping, LI Jie. Resource status of Japanese eel (Anguilla japonica) in the Pearl River Estuary[J]. South China Fisheries Science, 2015, 11(2): 85-89. DOI: 10.3969/j.issn.2095-0780.2015.02.012
    [9]WU Zhi, TAN Xichang, LI Xinhui, TANG Yong. Acoustic monitoring on fish resources in Xijiang section of Pearl River during first closed fishing season[J]. South China Fisheries Science, 2014, 10(3): 24-28. DOI: 10.3969/j.issn.2095-0780.2014.03.004
    [10]ZHU Shuli, LI Xinhui, LI Yuefei, WANG Chao, YANG Jiping, LI Lin. Age and growth of Spualiobarbus curriculus from Zhaoqing Guangdong Section of Xijiang River[J]. South China Fisheries Science, 2013, 9(2): 27-31. DOI: 10.3969/j.issn.2095-0780.2013.02.005
  • Cited by

    Periodical cited type(1)

    1. 赵晨,丛艳锋,王乐,宋聃,都雪,张澜澜,孙佳伟,王慧博,黄晓丽,霍堂斌. 连环湖河鲈的生长特性及资源评估. 水产学杂志. 2022(06): 66-74 .

    Other cited types(4)

Catalog

    Article views (6022) PDF downloads (87) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return