Citation: | ZHANG Song, WANG Jianguo, CHEN Xiaoqian, GUO Fang, YE Xiao, CHEN Xiaoxuan, WU Zefeng, ZHANG Min. Research on phytoplankton community structure and its influencing factors in mangrove wetlands of Futian, Shenzhen[J]. South China Fisheries Science, 2025, 21(2): 70-80. DOI: 10.12131/20240184 |
The Futian National Mangrove Nature Reserve in Guangdong, the only national-level natural reserve located in the urban hinterland in China, is best for studying the impact of human activities on the mangrove ecosystem. The phytoplankton community is an important indicator group for studying the health status of the aquatic ecosystem. In recent years, with the implementation of Shenzhen's water treatment and pollution control actions, the health status of the mangrove aquatic ecosystem needs further study. In September 2023, we carried out an investigation and analysis on the phytoplankton in Futian mangroves and environmental factors. The results indicate that the water quality in the Futian Mangrove Nature Reserve was classified as Class III, showing a state of moderate eutrophication. A total of 122 planktonic plant species were identified, with densities ranging from 0.02×106 to 122.21×106 cells·L−1 [(1.04±3.05)×107 cells·L−1 on average] and biomass from 18.04 to 999.71 μg·L−1 [(264.93±292.49) μg·L−1 on average]. The majority of dominant species were indicative of meso-eutrophic conditions or were types that preferred water bodies rich in organic matter, reflecting that the survey waters still exhibit a certain degree of eutrophication. Significant differences in planktonic community structure were observed between mangrove forests and surrounding fish ponds. The pH, electrical conductivity and salinity were identified as key environmental factors influencing planktonic community abundance, biomass, and diversity in the survey area. In general, the aquatic ecological environment in the Futian Mangrove Reserve needs further improvement.
[1] |
牛志远, 沈小雪, 柴民伟, 等. 深圳湾福田红树林区水环境质量时空变化特征[J]. 北京大学学报 (自然科学版), 2018, 54(1): 137-145.
|
[2] |
汪振松, 冯志勇, 陈鹏, 等. 近30年深圳湾红树林群落演变过程及其对人类活动的响应[J]. 中国农村水利水电, 2022(12): 24-30. doi: 10.12396/znsd.220428
|
[3] |
CHANDEL P, MAHAJAN D, THAKUR K, et al. A review on plankton as a bioindicator: a promising tool for monitoring water quality[J]. World Water Policy, 2024, 10(1): 213-232. doi: 10.1002/wwp2.12137
|
[4] |
张春梅, 朱宇轩, 宋高飞, 等. 南水北调中线干渠浮游植物群落时空格局及其决定因子[J]. 湖泊科学, 2021, 33(3): 675-686. doi: 10.18307/2021.0305
|
[5] |
刘玉, 陈桂珠, 缪绅裕. 深圳福田红树林系统藻类生态及系统净化功能研究[J]. 环境科学研究, 1994, 7(6): 29-34. doi: 10.3321/j.issn:1001-6929.1994.06.008
|
[6] |
刘玉, 路宁宁, 张俊帆, 等. 深圳湾福田红树林区藻类、纤毛虫等生物群落及其与环境的关系[J]. 热带海洋学报, 2006, 25(5): 56-62. doi: 10.3969/j.issn.1009-5470.2006.05.010
|
[7] |
陈长平, 高亚辉, 林鹏. 深圳福田红树林保护区浮游植物群落的季节变化及其生态学研究[J]. 厦门大学学报 (自然科学版), 2005, 44(S1): 11-15.
|
[8] |
王雨. 深圳红树林区浮游植物时空分布及优势种对营养盐限制和恢复的响应[D]. 厦门: 厦门大学, 2007: 22-24.
|
[9] |
王雨, 卢昌义, 谭凤仪, 等. 深圳红树林水体浮游植物多样性与营养状态评价[J]. 海洋环境科学, 2010, 29(1): 17-26. doi: 10.3969/j.issn.1007-6336.2010.01.004
|
[10] |
王雨, 林茂, 卢昌义, 等. 深圳红树林湿地浮游植物多样性的组成与分布[J]. 生态学杂志, 2009, 28(6): 1067-1072.
|
[11] |
陈悦. 深圳福田红树林区浮游植物生态特征及主要环境因子对孟氏小环藻胞外多糖的影响[D]. 厦门: 厦门大学, 2017: 27-33.
|
[12] |
楼少华, 唐颖栋, 陶明, 等. 深圳市茅洲河流域水环境综合治理方法与实践[J]. 中国给水排水, 2020, 36(10): 1-6.
|
[13] |
汪振松, 王政君, 戴韵, 等. 深圳河湾流域水质稳定达标方案探索与思考[J]. 水利技术监督, 2022(7): 89-92, 134. doi: 10.3969/j.issn.1008-1305.2022.07.024
|
[14] |
陈纯, 李思嘉, 胡韧, 等. 四种浮游植物生物量计算方法的比较分析[J]. 湖泊科学, 2013, 25(6): 927-935. doi: 10.18307/2013.0617
|
[15] |
焦学尧, 李瑞利, 沈小雪, 等. 基于GIS的福田红树林水环境健康评价[J]. 海洋湖沼通报, 2021, 43(3): 151-158.
|
[16] |
冯明军, 崔志杰, 胡清, 等. 城市河流水环境治理工程污染物削减效果评估[J]. 环境科学与技术, 2021, 44(S01): 253-258.
|
[17] |
陈叶花, 李俊杰, 谢恺琪, 等. 福田红树林生态公园浮游植物群落结构季节变化特征[J]. 湿地科学与管理, 2021, 17(3): 8-12. doi: 10.3969/j.issn.1673-3290.2021.03.02
|
[18] |
高宇, 林光辉. 典型红树林生态系统藻类多样性及其在生态过程中的作用[J]. 生物多样性, 2018, 26(11): 1223-1235. doi: 10.17520/biods.2018080
|
[19] |
WANG F F, LU Z Y, WANG Y, et al. Porewater exchange drives the dissolved silicate export across the wetland-estuarine continuum[J]. Front Mar Sci, 2023, 10: 1206776. doi: 10.3389/fmars.2023.1206776
|
[20] |
林秋奇, 胡韧, 段舜山, 等. 广东省大中型供水水库营养现状及浮游生物的响应[J]. 生态学报, 2003, 23(6): 1101-1108. doi: 10.3321/j.issn:1000-0933.2003.06.010
|
[21] |
LI Z X, LU X X, FAN Y W. Seasonal shifts in assembly dynamics of phytoplankton communities in a humans-affected river in NE China[J]. J Oceanol Limnol, 2022, 40(5): 1985-2000. doi: 10.1007/s00343-021-1272-x
|
[22] |
KOZAK A, BUDZYŃSKA A, DONDAJEWSKA-PIELKA R, et al. Functional groups of phytoplankton and their relationship with environmental factors in the restored Uzarzewskie Lake[J]. Water, 2020, 12(2): 313. doi: 10.3390/w12020313
|
[23] |
吴晓凡, 汪振华, 章守宇, 等. 大规模筏式贻贝养殖区浮游植物群落结构昼夜变化特征[J]. 上海海洋大学学报, 2024, 33(5): 1211-1222. doi: 10.12024/jsou.20240404476
|
[24] |
OUYANG C Y, QIN Y, FANG P, et al. Methane flux at the water-gas interface is influenced by complex interactions among phytoplankton, phosphorus inputs and methane-functional bacteria: a microcosm systems study[J]. Sci Total Environ, 2024, 912: 169373. doi: 10.1016/j.scitotenv.2023.169373
|
[25] |
郑鑫. 围堤工程对崇明东滩湿地浮游生物群落的影响[D]. 上海: 华东师范大学, 2020: 28-35.
|
[26] |
李丽, 马方方, 翟晓辉, 等. 深圳湾海域赤潮生物演变及赤潮预警关键因子分析[J]. 生态科学, 2022, 41(3): 82-89.
|
[27] |
桓清柳, 庞仁松, 周秋伶, 等. 深圳近岸海域氮、磷营养盐变化趋势及其与赤潮发生的关系[J]. 海洋环境科学, 2016, 35(6): 908-914.
|
[28] |
白海锋, 王怡睿, 宋进喜, 等. 渭河陕西段浮游植物群落结构时空变化与影响因子分析[J]. 环境科学学报, 2021, 41(8): 3290-3301.
|
[29] |
董立新, 周绪申. 浮游植物多样性指数在内陆水体污染类型评价中的应用简述[J]. 海河水利, 2017(5): 57-60. doi: 10.3969/j.issn.1004-7328.2017.05.019
|
[30] |
张景平, 黄小平, 江志坚, 等. 珠江口海域污染的水质综合污染指数和生物多样性指数评价[J]. 热带海洋学报, 2010, 29(1): 69-76. doi: 10.3969/j.issn.1009-5470.2010.01.011
|
[31] |
沈治蕊, 卞小红, 赵燕, 等. 南京煦园太平湖富营养化及其防治[J]. 湖泊科学, 1997, 9(4): 377-380. doi: 10.18307/1997.0415
|
[32] |
喻一, 宋芳, 赵志杰, 等. 深圳河河口近10年典型污染物通量变化研究[J]. 北京大学学报 (自然科学版), 2020, 56(3): 460-470.
|
[33] |
吴强, 刘聚涛, 温春云, 等. 丰水期鄱阳湖浮游植物群落构建机制及影响因素[J]. 湖泊科学, 2024, 36(5): 1353-1365. doi: 10.18307/2024.0512
|
[34] |
娄恬. 拉林河水系浮游植物功能类群分布格局及环境相关性研究[D]. 哈尔滨: 哈尔滨师范大学, 2023: 114-128.
|
[35] |
ZHU H, LI S Y, WU Z H, et al. Diversity patterns of eukaryotic phytoplankton in the medog section of the Yarlung Zangbo River[J]. Microb Ecol, 2024, 87(1): 59. doi: 10.1007/s00248-024-02371-6
|
[36] |
卜世勋. 河北抚宁海湾扇贝养殖区营养盐及浮游植物变化特征及分析[D]. 天津: 天津农学院, 2022: 41.
|
[37] |
于潇, 李希磊, 杨俊丽, 等. 烟台四十里湾扇贝养殖区水质评价及对浮游植物的影响[J]. 水产学杂志, 2020, 33(5): 58-64. doi: 10.3969/j.issn.1005-3832.2020.05.010
|
[38] |
赵开拓, 李志龙, 贺达. 内陆水体盐度升高对小球藻生理特性的影响[J]. 生物技术进展, 2022, 12(6): 894-899.
|
[39] |
游亮, 崔莉凤, 刘载文, 等. 藻类生长过程中DO、pH与叶绿素相关性分析[J]. 环境科学与技术, 2007, 30(9): 42-44. doi: 10.3969/j.issn.1003-6504.2007.09.015
|
[40] |
BADAR S N, MOHAMMAD M, EMDADI Z, et al. Algae and their growth requirements for bioenergy: a review[J]. Biofuels, 2021, 12(3): 307-325. doi: 10.1080/17597269.2018.1472978
|
[41] |
周志希, 唐汇娟, 柯志新, 等. 基于形态学和高通量测序的春季南澳海域浮游植物群落特征及其与环境因子关系[J]. 热带海洋学报, 2025, 44(1): 53-65.
|
[42] |
赵茜, 王兴华, 王蒙, 等. 三亚湾近岸海域浮游植物群落特征及其环境影响因子[J]. 热带生物学报, 2023, 14(6): 688-697.
|
[43] |
WU Y P, CAMPBELL D A, IRWIN A J, et al. Ocean acidification enhances the growth rate of larger diatoms[J]. Limnol Oceanogr, 2014, 59(3): 1027-1034. doi: 10.4319/lo.2014.59.3.1027
|
[44] |
HOPPE C J M, HOLTZ L M, TRIMBORN S, et al. Ocean acidification decreases the light-use efficiency in an Antarctic diatom under dynamic but not constant light[J]. New Phytol, 2015, 207(1): 159-171. doi: 10.1111/nph.13334
|
[45] |
PETROU K, BAKER K G, NIELSEN D A, et al. Acidification diminishes diatom silica production in the Southern Ocean[J]. Nat Clim Change, 2019, 9(10): 781-786. doi: 10.1038/s41558-019-0557-y
|
[46] |
VITUG L V D, BALDIA S F. Enhancement of some culture conditions for optimizing growth and lipid production in the diatom Nitzschia palea[J]. Acta Manilana, 2014, 62: 25-34. doi: 10.53603/actamanil.62.2014.egrm9555
|
[47] |
THOMAS E J. Diatoms and Invertebrates as Indicators of pH in Wetlands of the South-west of Western Australia[D]. Perth: Curtin University, 2007: 153-250.
|
[48] |
TOULIABAH H E, ABDEL-HAMID M I, ALMUTAIRI A W. Long-term monitoring of the biomass and production of lipids by Nitzschia palea for biodiesel production[J]. Saudi J Biol Sci, 2020, 27(8): 2038-2046. doi: 10.1016/j.sjbs.2020.04.014
|
[49] |
PANIAGUA-MICHEL J, BANAT I M. Unravelling diatoms' potential for the bioremediation of oil hydrocarbons in marine environments[J]. Clean Technol, 2024, 6(1): 93-115.
|