LYU Jinting, PEI Haiwei, WEI Huaning, WU Hualian, LI Tao, WU Houbo, XIANG Wenzhou. Response to UV-B radiation and physiological mechanism of marine microalga Asterarcys sp.[J]. South China Fisheries Science, 2023, 19(2): 78-88. DOI: 10.12131/20220140
Citation: LYU Jinting, PEI Haiwei, WEI Huaning, WU Hualian, LI Tao, WU Houbo, XIANG Wenzhou. Response to UV-B radiation and physiological mechanism of marine microalga Asterarcys sp.[J]. South China Fisheries Science, 2023, 19(2): 78-88. DOI: 10.12131/20220140

Response to UV-B radiation and physiological mechanism of marine microalga Asterarcys sp.

More Information
  • Received Date: May 14, 2022
  • Revised Date: August 20, 2022
  • Accepted Date: October 12, 2022
  • Available Online: February 11, 2023
  • In order to investigate the response of microalgae to UV-B radiation and their physiological mechanism, and to improve their potential value, we selected Asterarcys sp. SCSIO-44020 as material, and exposed them to UV-B radiation under different radiation conditions (0, 10, 30, 50 and 70 min each time, corresponding to radiation doses of 0, 150, 460, 770 and 1 050 mJ·cm−2) every 48 h until the end of the culture. The results show that, after a 20-day cultivation, UV-B radiation of 10–50 min treatment group had no significant effect on the growth of algae compared with the control group (P>0.05), but the 70 min treatment group inhibited the growth significantly (P<0.05). With the increase of UV-B radiation time, the protein content increased gradually, but the total lipid content decreased, with no siginificant differences between different groups and the control group (P>0.05). The total carotenoid and mycosporine-like amino acids (MAAs) contents increased with the increase of UV-B treatment time, and reached the maximum values in 70 min treatment group, 1.75 times that of the control group. However, compared with the control group, the total carbohydrates and MAAs yields in 50 min treatment group increased 12.40% and 57.61%, respectively, reaching the maximum values. In conclusion, Asterarcys sp. has a strong ability to resist UV-B radiation, and the increase of MAAs is the key to its adapting to UV radiation. Moreover, intermittent treatment of 50 min UV-B radiation is an effective approach to regulate the production of MAAs and other products in microalga.
  • [1]
    魏静, 林莉, 潘雄, 等. 不同环境胁迫因子对藻类分子生物学特性的影响研究进展[J]. 长江科学院院报, 2020, 37(4): 14-24. doi: 10.11988/ckyyb.20190062
    [2]
    RASTOGI R P, MADAMWAR D, NAKAMOTO H, et al. Resilience and self-regulation processes of microalgae under UV radiation stress[J]. J Photochem Photobiol C, 2020, 43: 100322. doi: 10.1016/j.jphotochemrev.2019.100322
    [3]
    HÄDER D P, WILLIAMSON C E, WÄNGBERG S Å, et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors[J]. Photochem Photobiol Sci, 2015, 14(1): 108-126.
    [4]
    EL-SHEEKH M M, ALWALEED E A, IBRAHIM A, et al. Detrimental effect of UV-B radiation on growth, photosynthetic pigments, metabolites and ultrastructure of some cyanobacteria and freshwater chlorophyta[J]. Int J Radiat Biol, 2021, 97(2): 265-275. doi: 10.1080/09553002.2021.1851060
    [5]
    缪锦来, 阚光锋, 李光友, 等. UV-B辐照培养下南极冰藻的形态和超微结构及主要生化组成的变化[J]. 中国海洋药物, 2003(6): 1-5. doi: 10.3969/j.issn.1002-3461.2003.06.001
    [6]
    KURINJIMALAR C, KAVITHA G, THEVANATHAN R, et al. Impact of ultraviolet-B radiation on growth and biochemical composition of Botryococcus braunii Kutz.[J]. Curr Sci, 2019, 116(1): 89. doi: 10.18520/cs/v116/i1/89-95
    [7]
    FUENTES-TRISTAN S, PARRA-SALDIVAR R, IQBAL H M N, et al. Bioinspired biomolecules: mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities[J]. J Photochem Photobiol B, 2019, 201: 111684. doi: 10.1016/j.jphotobiol.2019.111684
    [8]
    SABER H, EL-SHEEKH M M, IBRAHIM A, et al. Effect of UV-B radiation on amino acids profile, antioxidant enzymes and lipid peroxidation of some cyanobacteria and green algae[J]. Int J Radiat Biol, 2020, 96(9): 1192-1206. doi: 10.1080/09553002.2020.1793025
    [9]
    VARSHNEY P, BEARDALL J, BHATTACHARYA S, et al. Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide[J]. Algal Res, 2018, 30: 28-37. doi: 10.1016/j.algal.2017.12.006
    [10]
    SINGH D P, KHATTAR J S, RAJPUT A, et al. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions[J]. PLoS One, 2019, 14(9): e0221930. doi: 10.1371/journal.pone.0221930
    [11]
    LI T, YANG F F, XU J, et al. Evaluating differences in growth, photosynthetic efficiency, and transcriptome of Asterarcys sp. SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions[J]. Algal Res, 2020, 45: 101753. doi: 10.1016/j.algal.2019.101753
    [12]
    HONG J W, KIM S, CHANG J W, et al. Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential[J]. Algae, 2012, 27(3): 197-203. doi: 10.4490/algae.2012.27.3.197
    [13]
    卫华宁, 王灵, 李涛, 等. 不同氮源及氮浓度对海水驯化藻株Asterarcys sp. 生长及生化组成的影响[J]. 生物技术通报, 2021, 37(10): 34-44.
    [14]
    KHOZIN-GOLDBERG I, SHRESTHA P, COHEN Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2005, 1738(1/2/3): 63-71.
    [15]
    LI T, XU J, GAO B Y, et al. Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies[J]. Algal Res, 2016, 16: 481-491. doi: 10.1016/j.algal.2016.04.008
    [16]
    LI T, WAN L L, LI A F, et al. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations[J]. Chin J Oceanol Limnol, 2013, 31(6): 1306-1314. doi: 10.1007/s00343-013-2316-7
    [17]
    李嘉颖, 李涛, 谭丽, 等. 盐度对一株淡水栅藻Scenedesmus sp. 生长及生化组成的影响[J]. 生物技术通报, 2017, 33(7): 155-161.
    [18]
    吴燕燕, 张婉, 李来好, 等. 海萝藻中类菌胞素氨基酸的种类分析及抗氧化性能[J]. 中国食品学报, 2018, 18(5): 264-272. doi: 10.16429/j.1009-7848.2018.05.032
    [19]
    CHANDRA R, PONS-FAUDOA F P, SALDÍVAR R P, et al. Effect of ultra-violet exposure on production of mycosporine-like amino acids and lipids by Lyngbya purpurem[J]. Biomass Bioenerg, 2020, 134: 105475. doi: 10.1016/j.biombioe.2020.105475
    [20]
    SINGH G, BABELE P K, SINHA R P, et al. Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species[J]. Process Biochem, 2013, 48(5/6): 796-802. doi: 10.1016/j.procbio.2013.04.022
    [21]
    SINGH A, TYAGI M B, KUMAR A. Cyanobacteria growing on tree barks possess high amount of sunscreen compound mycosporine-like amino acids (MAAs)[J]. Plant Physiol Biochem, 2017, 119: 110-120. doi: 10.1016/j.plaphy.2017.08.020
    [22]
    SHEN S G, GUO R J, YAN R R, et al. Comparative proteomic analysis of Nostoc flagelliforme reveals the difference in adaptive mechanism in response to different ultraviolet-B radiation treatments[J]. Mol Biol Rep, 2018, 45(6): 1995-2006. doi: 10.1007/s11033-018-4355-9
    [23]
    XUE L G, ZHANG Y, ZHANG T G, et al. Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria[J]. Crit Rev Microbiol, 2005, 31(2): 79-89. doi: 10.1080/10408410590921727
    [24]
    LAURION I, ROY S. Growth and photoprotection in three dinoflagellates (including two strains of Alexandrium tamarense) and one diatom exposed to four weeks of natural and enhanced UVB radiation[J]. J Phycol, 2009, 45(1): 16-33. doi: 10.1111/j.1529-8817.2008.00618.x
    [25]
    孙小琴, 孙昕, 李鹏飞, 等. 紫外辐射对小球藻光合性能及油脂积累的影响[J]. 中国油脂, 2019, 44(12): 114-119.
    [26]
    CHEN H, HUANG K X, LIU S S, et al. Effects of ultraviolet (UV) radiation on outdoor-and indoor-cultured Prorocentrum lima, a toxic benthic dinoflagellate[J]. J Ocean Univ, 2021, 20(3): 619-628. doi: 10.1007/s11802-021-4560-3
    [27]
    屠燕萍, 俞泓伶, 谢志浩. 三角褐指藻和小角毛藻对UV-B辐射增强的生理生化响应[J]. 生态科学, 2013, 32(4): 474-479.
    [28]
    FU S M, XUE S, CHEN J, et al. Effects of different short-term UV-B radiation intensities on metabolic characteristics of Porphyra haitanensis[J]. Int J Mol Sci, 2021, 22(4): 2180. doi: 10.3390/ijms22042180
    [29]
    NOAMAN N H, AKL F, ABDEL-KAREEM M S M, et al. Effect of Ultraviolet-B irradiation on fatty acids, amino acids, protein contents, enzyme activities and ultrastructure of some algae[J]. Eur J Phycol, 2013, 14(1): 67-101.
    [30]
    王静, 郭照冰, 王瑾瑾, 等. UV-B对紫球藻生长抑制及生理特性的影响[J]. 水生态学杂志, 2018, 39(6): 114-120. doi: 10.15928/j.1674-3075.2018.06.017
    [31]
    GONZALEZ-SILVERA D, PÉREZ S, KORBEE N, et al. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta)[J]. J Phycol, 2017, 53(5): 999-1009. doi: 10.1111/jpy.12560
    [32]
    NAVARRO N P, MANSILLA A, FIGUEROA F L, et al. Short-term effects of solar UV radiation and NO3 supply on the accumulation of mycosporine-like amino acids in Pyropia columbina (Bangiales, Rhodophyta) under spring ozone depletion in the sub-Antarctic region, Chile[J]. Bot Marina, 2014, 57(1): 9-20. doi: 10.1515/bot-2013-0090
    [33]
    RASTOGI R P, INCHAROENSAKDI A. UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551[J]. Plant Physiol Biochem, 2013, 70: 7-13. doi: 10.1016/j.plaphy.2013.04.021
    [34]
    DIEHL N, MICHALIK D, ZUCCARELLO G C, et al. Stress metabolite pattern in the eulittoral red alga Pyropia plicata (Bangiales) in New Zealand-mycosporine-like amino acids and heterosides[J]. J Exp Mar Biol Ecol, 2019, 510: 23-30. doi: 10.1016/j.jembe.2018.10.002
    [35]
    张英莲. UV-B辐射对华南沿海常见赤潮藻类生长和类菌孢素氨基酸 (MAAs) 含量的影响[D]. 广州: 华南师范大学, 2007: 26-33.
    [36]
    王婉如, 张昺林, 张楠, 等. 蓝藻对UV-B增强的响应及其紫外屏蔽物质的研究[J]. 天然产物研究与开发, 2012, 24(9): 1303-1311, 1329. doi: 10.3969/j.issn.1001-6880.2012.09.034
    [37]
    NASSOUR R, AYASH A. Effects of ultraviolet-B radiation in plant physiology[J]. Agric (Pol'nohospodárstvo), 2021, 67(1): 1-15.
    [38]
    van den ENDE W, VALLURU R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging?[J]. J Exp Bot, 2009, 60(1): 9-18.
    [39]
    DEMIR E, KOCAOĞLU S, KAYA B. Protective effects of chlorophyll against the genotoxicity of UVB in Drosophila smart assay[J]. Fresenius Environ Bull, 2008, 17(12): 2180-2186.
    [40]
    SHEN S G, JIA S R, YAN R R, et al. The physiological responses of terrestrial cyanobacterium Nostoc flagelliforme to different intensities of ultraviolet-B radiation[J]. RSC Adv, 2018, 8(38): 21065-21074. doi: 10.1039/C8RA04024A
    [41]
    涂勃. 阳光UV辐射对铜绿微囊藻生理生化特性影响的研究[D]. 武汉: 湖北工业大学, 2018: 5-6.
  • Related Articles

    [1]CHEN Xiaohong, SHEN Xiaona, XU Yibin, XU Cuiya, ZHENG Huidong. Analysis of tetrodotoxin and microbial community structure in Nassarius semiplicatus[J]. South China Fisheries Science. DOI: 10.12131/20240235
    [2]ZHANG Kai, LIN Yijing, LI Chenyang, LIU Fangling, SHEN Minghao, ZHENG Shanjian. Effects of different C/N ratios on formation of biofloc, water quality and microflora in aquaculture water of Chinemys reevesii[J]. South China Fisheries Science, 2022, 18(4): 87-94. DOI: 10.12131/20200144
    [3]LIN Feng, JIA Ruonan, WANG Faxiang, XU Qianghua. Differential analysis of microRNAs in zebrafish gills under hypoxic stress[J]. South China Fisheries Science, 2022, 18(3): 86-93. DOI: 10.12131/20210124
    [4]TAO Feiyan, PAN Chuang, CHEN Shengjun, HU Xiao, DENG Jianchao, LI Chunsheng, RONG Hui, WANG Yueqi. Microbial analysis of Litopenaeus vannamei during partial freezing storage by Illumina high throughput sequencing[J]. South China Fisheries Science, 2021, 17(2): 104-113. DOI: 10.12131/20200211
    [5]KONG Xiaolan, LI Min, CHEN Zuozhi, GONG Yuyan, ZHANG Jun, ZHANG Peng. Development and evaluation of di-/tri-nucleotide-repeated microsatellites by RAD-seq in Decapterus macrosoma[J]. South China Fisheries Science, 2019, 15(3): 97-103. DOI: 10.12131/20180256
    [6]HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066
    [7]XIN Yanjie, HU Xiaojuan, CAO Yucheng, XU Yu, XU Yunna, SU Haochang, XU Chuangwen, WEN Guoliang, LI Zhuojia. Effects of inoculant of photosynthetic bacteria and Rhodopseudomonas palustris on nitrogen and phosphorus nutrients and microbial community in experimental water[J]. South China Fisheries Science, 2019, 15(1): 31-41. DOI: 10.12131/20180144
    [8]HUANG Sheng, JIANG Jingzhe, WANG Jiangyong, XU Xin. Viral detection from oyster tissue using viral metagenomics technology[J]. South China Fisheries Science, 2017, 13(5): 39-46. DOI: 10.3969/j.issn.2095-0780.2017.05.006
    [9]LI Xuguang, QI Zhanhui, LIN Lin, ZHANG Zhe, HUANG Honghui. Preliminary study on archaeal community in sediment of Dapeng Cove using high-throughput sequencing[J]. South China Fisheries Science, 2015, 11(6): 1-8. DOI: 10.3969/j.issn.2095-0780.2015.06.001
    [10]YANG Bing, LIN Lin, LI Chunhou, XU Shannan, LIU Yong, XIAO Yayuan, CHEN Zuozhi. Development and evaluation of microsatellite markers in Parargyrops edita[J]. South China Fisheries Science, 2015, 11(4): 116-120. DOI: 10.3969/j.issn.2095-0780.2015.04.017
  • Cited by

    Periodical cited type(1)

    1. 付志国,丁果林,段晶辉,姚云鹏,王琳. 渔业养殖平台网衣水动力载荷系数计算方法研究. 南方水产科学. 2025(03): 83-91 . 本站查看

    Other cited types(0)

Catalog

    Recommendations
    基于轴向特征校准和时间段网络的鱼群摄食强度分类模型研究
    徐波 et al., 南方水产科学, 2024
    海洋牧场建设效益评价研究进展与展望
    袁华荣 et al., 南方水产科学, 2024
    现代化海洋牧场增养殖方式及用海分类体系探讨
    潘天国 et al., 南方水产科学, 2024
    基于水体及胃含物dna宏条形码技术的斑鳠幼鱼食性分析
    蒙庆米 et al., 南方水产科学, 2024
    水产品货架期质量预测模型的研究进展
    董浩 et al., 渔业研究, 2024
    金枪鱼加工及其副产物的综合利用研究进展
    倪剑波 et al., 渔业研究, 2024
    Emerging technologies in seafood processing: an overview of innovations reshaping the aquatic food industry
    Russo, Giovanni Luca et al., COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2024
    Advancements in nonthermal physical field technologies for prefabricated aquatic food: a comprehensive review
    Ying, Xiaoguo et al., COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2024
    Fish quality evaluation by sensor and machine learning: a mechanistic review
    FOOD CONTROL
    Gas sensor technologies and mathematical modelling for quality sensing in fruit and vegetable cold chains: a review
    TRENDS IN FOOD SCIENCE & TECHNOLOGY
    Powered by
    Article views (401) PDF downloads (37) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return