LIN Feng, JIA Ruonan, WANG Faxiang, XU Qianghua. Differential analysis of microRNAs in zebrafish gills under hypoxic stress[J]. South China Fisheries Science, 2022, 18(3): 86-93. DOI: 10.12131/20210124
Citation: LIN Feng, JIA Ruonan, WANG Faxiang, XU Qianghua. Differential analysis of microRNAs in zebrafish gills under hypoxic stress[J]. South China Fisheries Science, 2022, 18(3): 86-93. DOI: 10.12131/20210124

Differential analysis of microRNAs in zebrafish gills under hypoxic stress

More Information
  • Received Date: April 21, 2021
  • Revised Date: June 20, 2021
  • Accepted Date: July 21, 2021
  • Available Online: August 30, 2021
  • In order to study the biological function of microRNAs (miRNAs) in response to hypoxic stress, we perfomed high-throughput miRNAs sequencing in the gill tissues of zebrafish (Danio rerio) under hypoxic stress and normoxic condition, and analyzed the differences in miRNAs expression in the gill tissues of zebrafish. The results show that a total of 15 miRNAs are significantly differentially expressed in the gills of zebrafish under hypoxic stress and normoxic condition, among which 13 miRNAs were up-regulated significantly and 2 miRNAs were down-regulated significantly. Moreover, we performed a correlation analysis on miRNAs sequencing and zebrafish gill transcriptome, and predicted the target genes for 28 heat shock protein genes that were significantly differentially expressed under hypoxic stress and normoxic condition screened in the previous stage. The result shows that miR-455-3p, which was expressed significantly low under hypoxic stress, targeted to increase the expression of hspa14 and dnajb6b and enhance the adaptability to hypoxic stress. In addition, miR-194a and miR-155, which were highly expressed under hypoxic stress, targeted five heat shock protein genes (hspa12a, dnajc5aa, hspb7, hsp70.3, dnajb2) and four heat shock protein genes (hspa12a, hspg2, hspa13, dnajb2) to regulate zebrafish's adaptation to hypoxic condition.
  • [1]
    RICHARDS J G. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia[J]. J Exp Biol, 2011, 214(2): 191-199. doi: 10.1242/jeb.047951
    [2]
    赵文文, 曹振东, 付世建. 溶氧水平对鳊鱼、中华倒刺鲃幼鱼游泳能力的影响[J]. 水生生物学报, 2013, 37(2): 314-320. doi: 10.7541/2013.20
    [3]
    钟雪萍, 王丹, 张义兵, 等. 鲫鱼低氧相关基因差减cDNA文库的构建与分析[J]. 水生生物学报, 2009, 33(1): 113-118.
    [4]
    BEST C, IKERT H, KOSTYNIUK D J, et al. Epigenetics in teleost fish: from molecular mechanisms to physiological phenotypes[J]. Comp Biochem Physiol B, 2018, 224: 210-244. doi: 10.1016/j.cbpb.2018.01.006
    [5]
    刘昌盛, 穆宇, 杜久林. 斑马鱼在生命科学研究中的应用[J]. 生命科学, 2007(4): 33-37.
    [6]
    SARASAMMA S, VARIKKODAN M M, LIANG S T, et al. Zebrafish: a premier vertebrate model for biomedical research in Indian scenario[J]. Zebrafish, 2017, 14(6): 589-605. doi: 10.1089/zeb.2017.1447
    [7]
    刘春晓, 吕为群, 杨志刚, 等. TGF-β/Smad信号通路响应光周期变化参与调控斑马鱼卵巢发育[J]. 南方水产科学, 2019, 15(3): 69-75.
    [8]
    SANTHAKUMAR K, JUDSON E C, ELKS P M, et al. A zebrafish model to study and therapeutically manipulate hypoxia signaling in tumorigenesis[J]. Cancer Res, 2012, 72(16): 4017-4027. doi: 10.1158/0008-5472.CAN-11-3148
    [9]
    张凡, 黄秋花, 陈赛娟, 等. 用斑马鱼模型研究低氧应激在造血和血液疾病中的作用[J]. 上海交通大学学报 (医学版), 2016, 36(8): 1237-1241.
    [10]
    狄治朝, 周涛, 许强华. 低氧胁迫与常氧条件下斑马鱼鳃中热休克蛋白基因家族的表达差异比较[J]. 大连海洋大学学报, 2018, 33(6): 11-16.
    [11]
    徐湛宁. 草鱼在低氧胁迫下鳃的差异蛋白质组学及热休克诱导草鱼四倍体育种研究[D]. 上海: 上海海洋大学, 2018: 11-12.
    [12]
    陈世喜, 王鹏飞, 区又君, 等. 急性和慢性低氧胁迫对卵形鲳鲹鳃器官的影响[J]. 南方水产科学, 2017, 13(1): 124-130. doi: 10.3969/j.issn.2095-0780.2017.01.016
    [13]
    REINHART B J, SLACK F J, BASSON M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906. doi: 10.1038/35002607
    [14]
    曾幼玲, 杨瑞瑞. 植物miRNA的生物学特性及在环境胁迫中的作用[J]. 中国农业科学, 2016, 49(19): 3671-3682. doi: 10.3864/j.issn.0578-1752.2016.19.001
    [15]
    QIAN M, WANG S, GUO X, et al. Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways[J]. Oncogene, 2020, 39(2): 428-442. doi: 10.1038/s41388-019-0996-y
    [16]
    ZHAO Y, ZHU C D, YAN B, et al. miRNA-directed regulation of VEGF in tilapia under hypoxia condition[J]. Biochem Bioph Res Commun, 2014, 454: 183-188. doi: 10.1016/j.bbrc.2014.10.068
    [17]
    SUN X H, WANG X, ZHANG Y, et al. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway[J]. Thromb Res, 2019, 177: 23-32. doi: 10.1016/j.thromres.2019.02.002
    [18]
    曲凌云, 孙修勤, 相建海, 等. 热休克蛋白研究进展[J]. 海洋科学进展, 2004, 22(3): 385-391. doi: 10.3969/j.issn.1671-6647.2004.03.019
    [19]
    黄勇, 龚望宝, 陈海刚, 等. 基于RNA-Seq高通量测序技术的大口黑鲈转录组分析[J]. 南方水产科学, 2019, 15(1): 106-112. doi: 10.12131/20180066
    [20]
    NAORA H. Involvement of ribosomal proteins in regulating cell growth and apoptosis: translational modulation or recruitment for extraribosomal activity[J]. Immunol Cell Biol, 1999, 77(3): 197-205. doi: 10.1046/j.1440-1711.1999.00816.x
    [21]
    ZHI F, SHAO N, XUE L, et al. Characteristic MicroRNA expression induced by δ-Opioid receptor activation in the rat liver under prolonged hypoxia[J]. Cell Physiol Biochem, 2017, 44(6): 2296-309. doi: 10.1159/000486067
    [22]
    CHEN P J, WENG J Y, HSU P H, et al. NPGPx modulates CPEB2-controlled HIF-1α RNA translation in response to oxidative stress[J]. Nucleic Acids Res, 2015, 43(19): 9393-9404. doi: 10.1093/nar/gkv1010
    [23]
    CAI Y H, LI Y P. Upregulation of miR-29b-3p protects cardiomyocytes from hypoxia-induced apoptosis by targeting TRAF5[J]. Cell Mol Biol Lett, 2019, 24(1): 27. doi: 10.1186/s11658-019-0151-3
    [24]
    ZHANG H, LI H, GE A, et al. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b[J]. Biomed Pharmacother, 2018, 101: 663-669. doi: 10.1016/j.biopha.2018.02.129
    [25]
    DING S, MIERADILIJIANG A, ZHOU Z, et al. Histamine deficiency aggravates cardiac injury through miR-206/216b-Atg13 axis-mediated autophagic-dependant apoptosis[J]. Cell Death Dis, 2018, 9(6): 694. doi: 10.1038/s41419-018-0723-6
    [26]
    YAN Y, CHENG W, ZHOU W, et al. Elevation of circulating miR-210-3p in high-altitude hypoxic environment[J/OL]. Front Physiol, 2016, 7: 84. DOI: 10.3389/fphys.2016.00084.
    [27]
    SHEN Y, ZHAO Y, WANG L, et al. MicroRNA-194 overexpression protects against hypoxia/reperfusion-induced HK-2 cell injury through direct targeting Rheb[J]. J Cell Biochem, 2018, 120(5): 8311-8318.
    [28]
    MATSUURA Y, WADA H, EGUCHI H, et al. Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells[J]. 2019, 64(3): 792-802.
    [29]
    YAN J R, XUE H J, WU S Q, et al. Ginsenoside-Rb1 protects hypoxic- and ischemic-damaged cardiomyocytes by regulating expression of miRNAs[J]. EVID-Based Compl Alt, 2015, 171306. DOI: 10.1155/2015/171306.
    [30]
    SHAN F, LI J, HUANG Q Y. HIF-1 alpha-induced up-regulation of miR-9 contributes to phenotypic modulation in pulmonary artery smooth muscle cells during hypoxia[J]. J Cell Physiol, 2014, 229(10): 1511-1520. doi: 10.1002/jcp.24593
    [31]
    TIAN L, CAI D, ZHUANG D, et al. miR-96-5p regulates proliferation, migration, and apoptosis of vascular smooth muscle cell induced by angiotensin II via targeting NFAT5[J]. J Vasc Res, 2020, 57(2): 1-11.
    [32]
    郭伟, 许万福, 赵俊红, 等. microRNA-1和热休克蛋白90在心肌缺氧复氧中的关系[J]. 中国分子心脏病学杂志, 2019, 108(5): 57-61.
    [33]
    苑洁, 邹云增. 压力超负荷致小鼠心肌肥厚中miR-378对热休克转录因子-1的调节作用[J]. 中国临床医学, 2019, 26(40): 543-648.
    [34]
    CLAEYS K G, SOZANSKA M, MARTIN J J, et al. DNAJB2 expression in normal and diseased human and mouse skeletal muscle[J]. Am J Pathol, 2010, 176(6): 2901-2910. doi: 10.2353/ajpath.2010.090663
    [35]
    VINCENZO L, CARMEN A, ERWIN K, et al. Chaperonopathies: spotlight on hereditary motor neuropathies[J]. Front Mol Biosci, 2016, 3: 81. DOI: 10.3389/fmolb.2016.00081.
    [36]
    ZHU Y, ZHOU H, ZHU Y, et al. Gene expression of Hsp70, Hsp90, and Hsp110 families in normal and abnormal embryonic development of mouse forelimbs[J]. Drug Chem Toxicol, 2012, 35(4): 432-444. doi: 10.3109/01480545.2011.640683
    [37]
    DING Y, LIU W, GORE B, et al. Abstract 41: Dnajb6b is a novel genetic modifier for cardiomyopathy that regulates ER stress response[J]. Circul Res, 2014, 115(Suppl 1): A41.
    [38]
    TRANLUNDMARK K, CHANG Y T, TANNENBERG P, et al. Lack of perlecan heparan sulfate impairs pulmonary vascular development and is protective in hypoxia induced pulmonary hypertension[J]. Cardiovasc Res, 2015, 107(1): 20-31. doi: 10.1093/cvr/cvv143

Catalog

    Article views (584) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return