Citation: | WU Xiaoci, FENG Zhiping, YU Wei. Spatio-temporal distribution of habitat patterns of Scomber japonicus in East China Sea under future climatic conditions[J]. South China Fisheries Science, 2023, 19(1): 12-21. DOI: 10.12131/20220126 |
[1] |
李曰嵩, 邢宇娜, 潘灵芝, 等. 鲐鱼生活史及模型应用研究进展[J]. 大连海洋大学学报, 2021, 36(4): 694-705. doi: 10.16535/j.cnki.dlhyxb.2020-227
|
[2] |
刘雅丹. 浅谈气候变化对渔业和水产养殖的影响[J]. 中国水产, 2022(1): 68-71.
|
[3] |
GENNER M J, SIMS D W, WEARMOUTH V J, et al. Regional climatic warming drives long-term community changes of British marine fish[J]. Proc R Soc B, 2004, 271(1539): 655-661. doi: 10.1098/rspb.2003.2651
|
[4] |
PERRY A L, LOW P J, ELLIS J R, et al. Climate change and distribution shifts in marine fishes[J]. Science, 2005, 308(5730): 1912-1915. doi: 10.1126/science.1111322
|
[5] |
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划 (CMIP6) 评述[J]. 气候变化研究进展, 2019, 15(5): 445-456.
|
[6] |
KIPARISSIS S, TSERPES G, TSIMENIDIS N. Aspects on the demography of chub mackerel (Scomber japonicus Houttuyn, 1782) in the Hellenic Seas[J]. Belg J Zool. 2000, 130: 5-9.
|
[7] |
范秀梅, 杨胜龙, 张胜茂, 等. 基于栖息地指数的阿拉伯海鲐鱼渔情预报模型构建[J]. 南方水产科学, 2020, 16(4): 8-17. doi: 10.12131/20190255
|
[8] |
李纲, 陈新军. 东海鲐鱼资源和渔场时空分布特征的研究[J]. 中国海洋大学学报 (自然科学版), 2007(6): 921-926.
|
[9] |
郭爱, 余为, 陈新军, 等. 中国近海鲐鱼资源时空分布与海洋净初级生产力的关系研究[J]. 海洋学报, 2018, 40(8): 42-52.
|
[10] |
李宜锴, 方星楠, 余为, 等. 2005—2016年中国东海鲐鱼渔场的时空分布及与海表面温度的关联[J]. 上海海洋大学学报, 2022, 31(3): 710-720. doi: 10.12024/jsou.20210503429
|
[11] |
郭爱. 气候与海洋环境变化对东黄海鲐鱼栖息地时空变动的影响[D]. 上海: 上海海洋大学, 2020: 2-4.
|
[12] |
杨胜龙, 范秀梅, 伍玉梅, 等. 基于GAM模型的阿拉伯海鲐鱼渔场分布与环境关系[J]. 生态学杂志, 2019, 38(8): 2466-2470. doi: 10.13292/j.1000-4890.201908.032
|
[13] |
李曰嵩. 东海鲐鱼 (Scomber japonica) 早期生活史过程的生态动力学模拟研究[D]. 上海: 上海海洋大学, 2012: 41-42.
|
[14] |
YU W, WEN J, CHEN X J, et al. Effects of climate variability on habitat range and distribution of chub mackerel in the East China Sea[J]. J Ocean Univ China, 2021, 20(6): 1483-1494. doi: 10.1007/s11802-021-4760-x
|
[15] |
刘红红, 朱玉贵. 气候变化对海洋渔业的影响与对策研究[J]. 现代农业科技, 2019(10): 244-247. doi: 10.3969/j.issn.1007-5739.2019.10.149
|
[16] |
CHEUNG W W L, LAM V W Y, SARMIENTO J L, et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change[J]. Glob Chang Biol, 2010, 16(1): 24-35. doi: 10.1111/j.1365-2486.2009.01995.x
|
[17] |
苏杭, 陈新军, 汪金涛. 海表水温变动对东、黄海鲐鱼栖息地分布的影响[J]. 海洋学报, 2015, 37(6): 88-96.
|
[18] |
张孝威. 鲐鱼[M]. 北京: 农业出版社, 1983: 42-46.
|
[19] |
SHULTZ A D, ZUCKERMAN Z C, TEWART H A, et al. Seasonal blood chemistry response of sub-tropical nearshore fishes to climate change[J]. Conserv Physiol, 2014, 2(1): 1-12.
|
[20] |
YASUDA T, NAGANO N, KITANO H. Diel vertical migration of chub mackerel: preliminary evidence from a biologging study[J]. Mar Ecol Prog Ser, 2018, 598: 147-151. doi: 10.3354/meps12636
|
[21] |
CHEN, X J, TIAN S Q, GUAN W J. Variations of oceanic fronts and their influence on the fishing grounds of Ommastrephes bartramii in the Northwest Pacific[J]. Acta Oceanol Sin, 2014, 33(4): 45-54. doi: 10.1007/s13131-014-0452-3
|
[22] |
易炜, 郭爱, 陈新军. 不同环境因子权重对东海鲐鱼栖息地模型的影响研究[J]. 海洋学报, 2017, 39(12): 90-97.
|
[23] |
宋利明, 许回, 陈明锐. 毛里塔尼亚海域日本鲭时空分布与海洋环境的关系[J]. 上海海洋大学学报, 2020, 29(6): 868-877. doi: 10.12024/jsou.20190702746
|
[24] |
官文江, 陈新军, 高峰, 等. 海洋环境对东、黄海鲐鱼灯光围网捕捞效率的影响[J]. 中国水产科学, 2009, 16(6): 949-958. doi: 10.3321/j.issn:1005-8737.2009.06.016
|
[25] |
王子鸣. 基于气候变化分析对海洋的影响[J]. 湖北农机化, 2020(5): 25.
|
[26] |
何越. 全球变暖背景下热带太平洋及中国近海气候变化动力降尺度预估[D]. 厦门: 厦门大学, 2017: 64-65.
|
[27] |
STOUFFER R J, BROCCOLI A J, DELWORTH T L, et al. GFDL's CM2 Global Coupled Climate Models. Part IV: idealized climate response[J]. J Clim, 2015, 19(5): 723-740.
|
[28] |
LEE H C. Impact of atmospheric CO2 doubling on the North Pacific subtropical mode water[J]. Geophys Res Lett, 2009, 36(6): 295-311.
|
[29] |
官文江. 基于海洋遥感的东、黄海鲐鱼渔场与资源研究[D]. 上海: 华东师范大学, 2008: 14-15.
|
[30] |
马超, 庄之栋, 刘勇, 等. 西北太平洋公海灯光敷网渔获组成及主要种类渔业生物学特征研究[J]. 渔业研究, 2018, 40(2): 141-147.
|
[31] |
SASSA C, KAWAGUCHI K, TAKI K. Larval mesopelagic fish assemblages in the Kuroshio-Oyashio transition region of the western North Pacific[J]. Mar Biol, 2007, 150(6): 1403-1415. doi: 10.1007/s00227-006-0434-x
|
[32] |
YATSU A, SASSA C, MOKU M, et al. Night-time vertical distribution and abundance of small epipelagic and mesopelagic fishes in the upper 100 m layer of the Kuroshio-Oyashio Transition Zone in spring[J]. Fish Sci, 2005, 71(6): 1280-1286. doi: 10.1111/j.1444-2906.2005.01094.x
|
[33] |
TIAN Y, UENO Y, SUDA M, et al. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century[J]. J Mar Syst, 2004, 52: 235-257. doi: 10.1016/j.jmarsys.2004.04.004
|
[34] |
DING X, HU B, LI J, et al. Late Holocene Orbital forcing and solar activity on the Kuroshio Current of subtropical North Pacific at different timescales[J]. Front Earth Sci, 2022, 10: 1-11.
|
[35] |
龚彩霞. 未来气候变化情景下西北太平洋柔鱼资源变动[D]. 上海: 上海海洋大学, 2020: 69-70.
|
[1] | CHEN Xiaohong, SHEN Xiaona, XU Yibin, XU Cuiya, ZHENG Huidong. Analysis of tetrodotoxin and microbial community structure in Nassarius semiplicatus[J]. South China Fisheries Science. DOI: 10.12131/20240235 |
[2] | ZHANG Kai, LIN Yijing, LI Chenyang, LIU Fangling, SHEN Minghao, ZHENG Shanjian. Effects of different C/N ratios on formation of biofloc, water quality and microflora in aquaculture water of Chinemys reevesii[J]. South China Fisheries Science, 2022, 18(4): 87-94. DOI: 10.12131/20200144 |
[3] | LIN Feng, JIA Ruonan, WANG Faxiang, XU Qianghua. Differential analysis of microRNAs in zebrafish gills under hypoxic stress[J]. South China Fisheries Science, 2022, 18(3): 86-93. DOI: 10.12131/20210124 |
[4] | TAO Feiyan, PAN Chuang, CHEN Shengjun, HU Xiao, DENG Jianchao, LI Chunsheng, RONG Hui, WANG Yueqi. Microbial analysis of Litopenaeus vannamei during partial freezing storage by Illumina high throughput sequencing[J]. South China Fisheries Science, 2021, 17(2): 104-113. DOI: 10.12131/20200211 |
[5] | KONG Xiaolan, LI Min, CHEN Zuozhi, GONG Yuyan, ZHANG Jun, ZHANG Peng. Development and evaluation of di-/tri-nucleotide-repeated microsatellites by RAD-seq in Decapterus macrosoma[J]. South China Fisheries Science, 2019, 15(3): 97-103. DOI: 10.12131/20180256 |
[6] | HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066 |
[7] | XIN Yanjie, HU Xiaojuan, CAO Yucheng, XU Yu, XU Yunna, SU Haochang, XU Chuangwen, WEN Guoliang, LI Zhuojia. Effects of inoculant of photosynthetic bacteria and Rhodopseudomonas palustris on nitrogen and phosphorus nutrients and microbial community in experimental water[J]. South China Fisheries Science, 2019, 15(1): 31-41. DOI: 10.12131/20180144 |
[8] | HUANG Sheng, JIANG Jingzhe, WANG Jiangyong, XU Xin. Viral detection from oyster tissue using viral metagenomics technology[J]. South China Fisheries Science, 2017, 13(5): 39-46. DOI: 10.3969/j.issn.2095-0780.2017.05.006 |
[9] | LI Xuguang, QI Zhanhui, LIN Lin, ZHANG Zhe, HUANG Honghui. Preliminary study on archaeal community in sediment of Dapeng Cove using high-throughput sequencing[J]. South China Fisheries Science, 2015, 11(6): 1-8. DOI: 10.3969/j.issn.2095-0780.2015.06.001 |
[10] | YANG Bing, LIN Lin, LI Chunhou, XU Shannan, LIU Yong, XIAO Yayuan, CHEN Zuozhi. Development and evaluation of microsatellite markers in Parargyrops edita[J]. South China Fisheries Science, 2015, 11(4): 116-120. DOI: 10.3969/j.issn.2095-0780.2015.04.017 |
1. |
付志国,丁果林,段晶辉,姚云鹏,王琳. 渔业养殖平台网衣水动力载荷系数计算方法研究. 南方水产科学. 2025(03): 83-91 .
![]() |