WANG Shuxian, ZHANG Shengmao, DAI Yang, WANG Yongjin, SUI Jianghua, ZHU Wenbin. Research on calculating fishing depth of krill by sonar data[J]. South China Fisheries Science, 2021, 17(4): 91-97. DOI: 10.12131/20210020
Citation: WANG Shuxian, ZHANG Shengmao, DAI Yang, WANG Yongjin, SUI Jianghua, ZHU Wenbin. Research on calculating fishing depth of krill by sonar data[J]. South China Fisheries Science, 2021, 17(4): 91-97. DOI: 10.12131/20210020

Research on calculating fishing depth of krill by sonar data

More Information
  • Received Date: January 12, 2021
  • Revised Date: April 13, 2021
  • Accepted Date: April 26, 2021
  • Available Online: May 07, 2021
  • In order to determine the trawl depth quickly, improve the fishing efficiency and reduce the cost of fishery production, the paper proposes a method for calculating the optimal fishing depth of the specified fish target based on the sonar device metadata. Sonar device metadata structure is relatively complex and contains much redundant data. In the paper, the original data were simplified, and the information of seabed depth and target strength was calculated and extracted. The effective data range and noise data range were determined according to the type of target fishery resources. After filtering the noise data, the effective data was displayed in the form of statistical chart. The target fishery resources of each depth were counted. The relationship between depth and target fishery resources was constructed, and the optimal fishing depth was calculated and predicted by various methods. The results show that the optimal fishing depth of krill (Euphausia superba, target intensity −69.5–−40.8 dB) was 172.9–187 m in the survey area. According to the sonar data obtained in a certain sea area over a period of time, the optimal fishing depth of the target fishery resources in that sea area can be calculated quickly.
  • [1]
    孔德平, 秦涛, 范亦农, 等. 邛海鱼类资源与空间分布的水声学调查[J]. 水生态学杂志, 2019, 40(1): 22-29.
    [2]
    王崇瑞, 索纹纹, 蒋国民, 等. 东洞庭湖长江江豚及其与鱼类资源相关性[J]. 中国环境科学, 2019, 39(10): 4424-4434. doi: 10.3969/j.issn.1000-6923.2019.10.048
    [3]
    WHITMORE B M, NICKELS C F, OHMAN M D. A comparison between zooglider and shipboard net and acoustic mesozooplankton sensing systems[J]. J Plank Res, 2019, 41(4): 521-533. doi: 10.1093/plankt/fbz033
    [4]
    彭松耀, 赖子尼, 麦永湛. 珠江口大型底栖动物数量与生物多样性的分布特征[J]. 海洋渔业, 2019, 41(3): 266-277. doi: 10.3969/j.issn.1004-2490.2019.03.002
    [5]
    DENIS V, FAN T Y, HSIAO W V, et al. Idea paper: tracking the distribution of accretive reef communities across the Kuroshio region[J]. Ecol Res, 2020, 35(4): 595-598. doi: 10.1111/1440-1703.12128
    [6]
    ELENA R, SERGEY G, ANDREY G, et al. Vertical distribution of megafauna on the Bering Sea slope based on ROV survey[J]. PeerJ, 2020, 8(1): 1-26.
    [7]
    JORDA G, MARBÀ N, BENNETT S, et al. Ocean warming compresses the three-dimensional habitat of marine life[J]. Nat Ecol Evol, 2020, 4(1): 109-114. doi: 10.1038/s41559-019-1058-0
    [8]
    王腾, 朱国平, 童剑锋, 等. 南极南奥克尼群岛2017年春季南极磷虾资源声学评估[J]. 中国水产科学, 2019, 26(2): 333-341.
    [9]
    朱国平, 杨洋, 王芮, 等. 采用声学方法研究2016年秋季布兰斯菲尔德海峡南极磷虾群昼夜垂直移动特征及其影响因素[J]. 水产学报, 2018, 42(10): 1541-1549.
    [10]
    王腾. 南奥克尼群岛海域南极磷虾声学评估[D]. 上海: 上海海洋大学, 2018: 22-24.
    [11]
    曹亮, 曹瑞岐. 水下刚性椭球体目标强度的角度分布特性研究[J]. 舰船电子工程, 2020, 40(1): 180-183. doi: 10.3969/j.issn.1672-9730.2020.01.043
    [12]
    BAKHTIAR D, JAYA I, MANIK H M, et al. Analysis of reef fish target strength through ex-situ measurement using acoustic methods[J]. Eur Food Res Technol, 2020, 14(5): 53-61.
    [13]
    WU X, SU L, WANG K, et al. GPU-accelerated calculation of acoustic echo characteristics of underwater targets[C]. 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), 2020: 227-231.
    [14]
    MOULIN E, NYRKOVA I A, GIUSEPPONE N, et al. Homodyne dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in intensity correlation function[J]. Soft Matter, 2020, 16(12): 2971-2993. doi: 10.1039/C9SM02480H
    [15]
    WANG Y, YU W, WANG C, et al. A modified four-component decomposition method with refined volume scattering models[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13: 1946-1958.
    [16]
    李斌, 陈国宝, 曾雷, 等. 多鳞目标强度的模型法研究[J]. 中国水产科学, 2018, 25(2): 403-412.
    [17]
    王金明, 孙扬, 毕福洋, 等. 鱼类目标强度测量方法及应用[J]. 科学技术创新, 2018, 10(7): 21-23. doi: 10.3969/j.issn.1673-1328.2018.07.010
    [18]
    王俊洁, 刘青. 基于谱聚类的自适应新生目标强度状态提取[J]. 计算机工程与设计, 2019, 40(3): 874-878.
    [19]
    官文江, 吴佳文, 曹友华. 利用后向预报方法分析印度洋黄鳍金枪鱼资源评估模型[J]. 中国海洋大学学报(自然科学版), 2020, 50(2): 52-59.
    [20]
    GREENE C H, STANTON T K, WIEBE P H, et al. Acoustic estimates of Antarctic krill[J]. Nature, 1991, 349(6305): 110-110. doi: 10.1038/349110a0
    [21]
    DEMER D A, MARTIN L V. Zooplankton target strength: volumetric or areal dependence?[J]. J Acoust Soc Am, 1995, 98(2): 1111-1118. doi: 10.1121/1.413609
    [22]
    BASSETT C, LAVERY A C, STANTON T K. Broadband measurements of the acoustic target strength of mesopelagic fishes[J]. J Acoust Soc Am, 2019, 146(4): 2772.
    [23]
    PALERMINO A, de FELICE A, CANDUCI G, et al. First target strength measurement of Trachurus mediterraneus and Scomber colias in the Mediterranean Sea[J]. Fish Res, 2021, 240: 1-10.
    [24]
    史登福, 张魁, 陈作志. 基于生活史特征的数据有限条件下渔业资源评估方法比较[J]. 中国水产科学, 2020, 27(1): 12-24.
    [25]
    刘岩, 吴忠鑫, 杨长平, 等. 基于Ecopath模型的珠江口6种增殖放流种类生态容纳量估算[J]. 南方水产科学, 2019, 15(4): 19-28. doi: 10.12131/20180265
    [26]
    张俊, 邱永松, 陈作志, 等. 南海外海大洋性渔业资源调查评估进展[J]. 南方水产科学, 2018, 14(6): 118-127. doi: 10.12131/20180037
    [27]
    黄朔, 李连翔, 刀微, 等. 泸沽湖鱼类空间分布特征分析与资源量评估[J]. 南方水产科学, 2020, 16(1): 53-61. doi: 10.12131/20190180
    [28]
    王言丰, 胡启伟, 余景, 等. 粤东柘林湾海洋牧场渔业资源增殖效果评估[J]. 南方水产科学, 2019, 15(2): 12-19. doi: 10.12131/20180143
  • Related Articles

    [1]BAO Zhiming, ZOU Yongfeng, CAO Panhui, ZHANG Jiayuan, XU Yu, XU Zhiqiang, GUO Hui. Effect of high temperature stress on intestinal tissues morphology and transcriptome of Procambarus clarkii[J]. South China Fisheries Science, 2025, 21(1): 105-117. DOI: 10.12131/20240161
    [2]QIAO Di, LEI Ning, ZHU Junjie, ZHANG Chaonan, WANG Yanchao, ZHOU Ling. Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2024, 20(4): 164-176. DOI: 10.12131/20240050
    [3]HAO Tian, TANG Xianhu, JIANG Shouwen, WU Zhichao, XU Qianghua. Transcriptome comparative analysis of liver tissues of three plateau Schizothoracinae fish species[J]. South China Fisheries Science, 2024, 20(3): 92-100. DOI: 10.12131/20230204
    [4]SONG Ruhao, HU Ruiqin, LI Genfang, ZHANG Zhicong, XU Qianghua. Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology[J]. South China Fisheries Science, 2022, 18(6): 60-68. DOI: 10.12131/20220038
    [5]GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125
    [6]SHEN Ye, WANG Xingqiang, CAO Mei, ZHENG Nianhao, CHEN Baiyao, QIN Chuanxin. Transcriptome analysis of Exopalaemon carinicauda under low salinity stress[J]. South China Fisheries Science, 2020, 16(5): 19-32. DOI: 10.12131/20190267
    [7]HUO Huanhuan, LIU Yu, ZHOU Qiubai, GUO Feng, WEI Lili, PENG Mo, ZHANG Yanping, CHEN Wenjing. Primary study on differentially expressed genes screening of Monopterus albus and their regulation mechanism[J]. South China Fisheries Science, 2020, 16(1): 1-8. DOI: 10.12131/20190176
    [8]HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066
    [9]BEI Lei, SU Youlu, ZHAO Chao, XU Liwen, LIU Guangfeng, WANG Yu, GUO Zhixun, FENG Juan. Cloning rbsB gene from Vibrio harveyi and its expression[J]. South China Fisheries Science, 2018, 14(2): 75-82. DOI: 10.3969/j.issn.2095-0780.2018.02.010
    [10]YU Wenbo, ZHU Kecheng, GUO Huayang, ZHANG Nan, SUN Xiaoxiao, WU Na, ZHANG Dianchang. Cloning and expression analysis of MHCβ gene in Trachinotus ovatus[J]. South China Fisheries Science, 2017, 13(4): 69-79. DOI: 10.3969/j.issn.2095-0780.2017.04.009
  • Cited by

    Periodical cited type(14)

    1. 唐峰华,巴尧骥,肖戈,石永闯,赵国庆,郭爱,张衡,崔雪森,陈峰. 西北印度洋公海鸢乌贼的繁殖生物学及其与环境要素的关系. 上海海洋大学学报. 2025(02): 350-364 .
    2. 赵艺翔,朱凯,王孟佳,王嘉浩,陈峰,朱文斌. 西北印度洋雌性鸢乌贼繁殖生物学特性研究. 海洋渔业. 2025(02): 273-282 .
    3. 温利红,张衡,方舟,陈新军. 鸢乌贼渔业资源研究进展. 水产科学. 2023(03): 527-537 .
    4. 郭有俊,张丽姿,刘毅,曾笑薇,招春旭,李渊,颜云榕. 基于内壳生长纹的秋季东印度洋鸢乌贼生长特性. 水产学报. 2022(11): 2076-2083 .
    5. 颜云榕,邱星宇,张丽姿,钟亚娜,周倍合,招春旭,李忠炉. 南沙海域鸢乌贼繁殖生物学特性. 广东海洋大学学报. 2021(03): 20-27 .
    6. 陆化杰,宁欣,刘维,张羽翔,陈子越,陈新军. 不同气候条件下南海西沙海域鸢乌贼(Sthenoteuthis oualaniensis)渔业生物学比较研究. 海洋与湖沼. 2021(04): 1029-1038 .
    7. 朱凯,张立川,肖楚源,陈新军,林东明,朱俊磊. 南海鸢乌贼微型群雌性个体繁殖力研究. 渔业科学进展. 2020(06): 140-148 .
    8. 郭有俊,吴文秀,凌炜琪,招春旭,冯波,颜云榕. 海南东南部海域春季鸢乌贼CPUE与海洋环境关系. 广东海洋大学学报. 2020(06): 63-70 .
    9. 黄佳兴,龚玉艳,徐姗楠,陈作志,张俊,于文明. 南海中西部海域鸢乌贼中型群和微型群的营养生态位. 应用生态学报. 2019(08): 2822-2828 .
    10. 江淼,马胜伟,吴洽儿. 鸢乌贼资源综合利用技术研究现状. 食品工业科技. 2018(06): 340-344 .
    11. 江淼,马胜伟,吴洽儿. 南海鸢乌贼资源探捕与开发. 中国渔业经济. 2018(02): 65-70 .
    12. 粟丽,陈作志,张鹏,李杰,王欢欢,黄佳兴. 2017年南海中南部渔场灯光罩网渔获物组成及渔获率时空分布. 南方水产科学. 2018(05): 11-20 . 本站查看
    13. 冯菲. 大数据技术在南海鸢乌贼资源调查上的研究进展. 安徽农业科学. 2018(33): 12-13+18 .
    14. 黄卉,杨丽芝,杨贤庆,李来好,郝淑贤,魏涯,王锦旭. 南海鸢乌贼墨汁多糖分离纯化及组分分析. 食品科学. 2017(24): 118-123 .

    Other cited types(18)

Catalog

    Recommendations
    Embryonic and larval development of sea urchin (temnopleurus reevesii)
    YU Weihuan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Analysis of changes in intestinal structure and microbial composition inelentheronema tetradactylumjuvenile at different days of age
    FENG Yuantai et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Food habits study ofmystus guttatusjuvenile based on water body analysis and dna macro barcode technology for stomach contents
    MENG Qingmi et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Differential expression of the rimoc1 gene in male and female chinese tongue sole (cynoglossus semilaevis)
    SUN Yuxuan et al., PROGRESS IN FISHERY SCIENCES, 2024
    Gender differences in dictamnin-induced liver injury in mice based on transcriptome and dna methylation
    YU Zihui et al., DEPARTMENT OF JOURNAL OF PLA MEDICAL COLLEGE, 2024
    The complete sequence and comparative analysis of ape sex chromosomes
    Makova, Kateryna D., NATURE, 2024
    Classification of feline hypertrophic cardiomyopathy-associated gene variants according to the american college of medical genetics and genomics guidelines
    Boeykens, Frederique et al., FRONTIERS IN VETERINARY SCIENCE, 2024
    A study of enhanced visual perception of marine biology images based on diffusion-gan
    COMPLEX & INTELLIGENT SYSTEMS
    Dft study on mechanism and regioselectivity in pd(ii)-catalyzed dehydrogenative heck olefination of selenophenes
    CHEMISTRYSELECT, 2025
    Powered by
    Article views (1061) PDF downloads (52) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return