CUI Ke, YANG Qibin, MA Zhenhua. Ingestion, digestion and food selection of crimson snapper(Lutjanus erythopterus) larvae and juveniles[J]. South China Fisheries Science, 2018, 14(6): 43-51. DOI: 10.12131/20180114
Citation: CUI Ke, YANG Qibin, MA Zhenhua. Ingestion, digestion and food selection of crimson snapper(Lutjanus erythopterus) larvae and juveniles[J]. South China Fisheries Science, 2018, 14(6): 43-51. DOI: 10.12131/20180114

Ingestion, digestion and food selection of crimson snapper(Lutjanus erythopterus) larvae and juveniles

More Information
  • Received Date: May 17, 2018
  • Revised Date: June 20, 2018
  • Accepted Date: June 21, 2018
  • Available Online: December 05, 2018
  • To determine the optimal feeding density of rotifer and weaning time for Lutjanus erythopterus larvae and juveniles, we studied the impact of different rotifer feeding densities on the growth, survival and food selectivity for juvenile L. erythopterus. Then we investigated the effect of weaning time [13 dph (days post hatching, W13), 16 dph (W16), 19 dph (W19) and 22 dph (W22)] on the rearing performance of larval and juvenile L. erythopterus by using the evaluation indicators of growth, survival, RNA/DNA ratio and epithelial cell height of the digestive tract. The results show that the feeding density of rotifer affected the ingestion, food selection, growth and survival rate of L. erythopterus juveniles significantly. When the feeding density of rotifer was 10–20 ind·mL–1, there was no significant difference in the growth and survival rate of the juveniles, but significantly higher than treatment groups of 1 ind·mL–1 and 30 ind·mL–1. In the weaning experiment, the growth and survival rates of W19 and W22 groups were significantly higher than those of the other two groups, and the W13 treatment group had the lowest RNA/DNA ratio. At 22 dph, the height of the epithelial cells of digestive tract was significantly lower in the W13 and W16 groups than in the other two groups. It is indicated that the rotifer density had significant impact on the food selectivity of L. erythopterus during mixed feeding period of rotifers and Artemia nauplii. The rotifer density of 10–20 ind·mL–1 is recommended for the initial feeding period of L. erythopterus, and the weaning of L. erythopterus can be started on 13 dph, but the best timing was 16–22 dph.
  • [1]
    HU J, LIU Y, MA Z, et al. Feeding and development of warm water marine fish larvae in early life[M]//YUFERA M. Emerging issues in fish larvae research. Cham, Switzerland: Springer International Publishing AG, 2018: 275-296.
    [2]
    郭浩宇, 张秀梅, 张宗航, 等. 许氏平鲉仔、稚鱼的摄食特性及幼鱼胃排空率[J]. 水产学报, 2017, 41(2): 285-296.
    [3]
    于欢欢, 李炎璐, 陈超, 等. 棕点石斑鱼(♀)×鞍带石斑鱼(♂)杂交F1仔、稚、幼鱼的摄食与生长特性分析[J]. 中国水产科学, 2015, 22(5): 968-977.
    [4]
    刘利平, 刘登攀, 蒲金成, 等. 日本鳗鲡仔鱼的开口饵料和行为特征[J]. 水产学报, 2017, 41(5): 703-710.
    [5]
    王晓龙, 温海深, 张美昭, 等. 花鲈初孵仔鱼饥饿不可逆点的确定及摄食节律研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(5): 57-64.
    [6]
    高小强, 洪磊, 刘志峰, 等. 美洲西鲱仔鱼不可逆点及仔、稚鱼摄食特性研究[J]. 水产学报, 2015, 39(3): 392-400.
    [7]
    杨育凯, 虞为, 林黑着, 等. 豹纹鳃棘鲈仔鱼饥饿实验和不可逆点研究[J]. 南方水产科学, 2017, 13(6): 90-96.
    [8]
    隋延鸣, 庄亚润, 周凯, 等. 轮虫、卤虫无节幼体及蝇蛆三种开口饵料对黄颡鱼仔鱼生长、存活及免疫酶活性的影响[J]. 水产学杂志, 2018, 31(2): 20-24.
    [9]
    MA Z, GUO H, ZHANG D, et al. Food ingestion, consumption and selectivity of pompano, Trachinotus ovatus (Linnaeus 1758) under different rotifer densities[J]. Aquacult Res, 2015, 46(11): 2593-2603.
    [10]
    MA Z, QIN J G, HUTCHINSON W, et al. Food consumption and selectivity by larval yellowtail kingfish Seriola lalandi cultured at different live feed densities[J]. Aquacult Nutr, 2013, 19(4): 523-534.
    [11]
    TANAKA Y, SATOH K, YAMADA H, et al. Assessment of the nutritional status of field-caught larval Pacific bluefin tuna by RNA/DNA ratio based on a starvation experiment of hatchery-reared fish[J]. J Exp Mar Bio Ecol, 2008, 354(1): 56-64.
    [12]
    PILAR OLIVAR M, DIAZ M V, CHÍCHARO M A. Tissue effect on RNA:DNA ratios of marine fish larvae[J]. Scientia Marina, 2009, 73(S1): 171-182.
    [13]
    CHEN B N, QIN J G, CARRAGHER J F, et al. Deleterious effects of food restrictions in yellowtail kingfish Seriola lalandi during early development[J]. Aquaculture, 2007, 271(1/2/3/4): 326-335.
    [14]
    刘皓, 张玉红, 罗杰, 等. 红鳍笛鲷(Lutjanus erythopterus)卵巢发育的组织学研究[J]. 海洋与湖沼, 2016, 47(1): 269-275.
    [15]
    程大川, 马振华, 江世贵. 红鳍笛鲷仔、稚鱼异速生长[J]. 水生生物学报, 2017, 41(1): 206-213.
    [16]
    李加儿, 区又君, 刘匆. 红笛鲷和卵形鲳鲹鳃的扫描电镜观察与功能探讨[J]. 海洋水产研究, 2007, 28(6): 45-50.
    [17]
    CUI K, CHENG D C, MA Z H, et al. Ontogenetic development of digestive enzymes in larval and juvenile crimson snapper Lutjanus erythopterus (Bloch 1790)[J]. Aquacult Res, 2017, 48(8): 4533-4544.
    [18]
    CUI K, FU Z, CHENG D, et al. Development of immune functionality in larval and juvenile crimson snapper Lutjanus erythropterus (Bloch 1790)[J]. Aquacult Rep, 2018, 10: 1-7.
    [19]
    HOPKINS K D. Reporting fish growth: a review of the basics[J]. J World Aquacult Soc, 1992, 23(3): 173-179.
    [20]
    ELLIOTT J M, PERSSON L. The estimation of daily rates of food consumption for fish[J]. J Anim Ecol, 1978, 47(3): 977-991.
    [21]
    IVLEV V S. Experimental ecology of the feeding of fishes[J]. Copeia, 1962, 1: 234-236.
    [22]
    KLUMPP D W, von WESTERNHAGEN H. Nitrogen balance in marine fish larvae: influence of developmental stage and prey density[J]. Mar Biol, 1986, 93(2): 189-200.
    [23]
    ZEHRA S, KHAN M A. Dietary histidine requirement of fingerling Catla catla (Hamilton) based on growth, protein gain, histidine gain, RNA/DNA ratio, haematological indices and carcass composition[J]. Aquacult Res, 2016, 47(4): 1028-1039.
    [24]
    MA Z, QIN J G, NIE Z. Morphological changes of marine fish larvae and their nutrition need[M]//NIROOMAND P K. Larvae: morphology, biology and life cycle. New York: Nova Science Publisher, Inc., 2012: 1-20.
    [25]
    WELLINGTON C G, MAYER C M, BOSSENBROEK J M, et al. Effects of turbidity and prey density on the foraging success of age 0 year yellow perch Perca flavescens[J]. J Fish Biol, 2010, 76(7): 1729-1741.
    [26]
    RUZICKAJ J, GALLAGER S M. The importance of the cost of swimming to the foraging behavior and ecology of larval cod (Gadus morhua) on Georges Bank[J]. Deep-Sea Res II, 2006, 53(23/24): 2708-2734.
    [27]
    THEILACKER G H, PORTER S M. Condition of larval walleye pollock, Theragra chalcogramma, in the western Gulf of Alaska assessed with histological and shrinkage indices[J]. Fish Bull, 1995, 93: 333-344.
    [28]
    HAMZA N, MHETLI M, KESTEMONT P. Effects of weaning age and diets on ontogeny of digestive activities and structures of pikeperch (Sander lucioperca) larvae[J]. Fish Physiol Biochem, 2007, 33(2): 121-133.
    [29]
    DIAZ M V, PAJARO M, OLIVAR M P. Nutritional condition of Argentine anchovy Engraulis anchoita larvae in connection with nursery ground properties[J]. Fish Res, 2011, 109(2/3): 330-341.
    [30]
    MA Z, ZHENG P, GUO H, et al. Effect of weaning time on the performance of Trachinotus ovatus (Linnaeus 1758) larvae[J]. Aquacult Nutr, 2015, 21(5): 670-678.
    [31]
    MA Z H, QIN J G, HUTCHINSON W, et al. Responses of digestive enzymes and body lipids to weaning times in yellowtail kingfish Seriola lalandi (Valenciennes, 1833) larvae[J]. Aquacult Res, 2014, 45(6): 973-982.
  • Related Articles

    [1]MA Jun, LIU Jiaxin, JIANG Zhijing, ZHOU Yongsen, YU Zhenhao, WANG Haishan, CHEN Yan, CHEN Pan, HUANG Hai. Development and identification of SSR markers based on RNA-seq data of Diodon hystrix[J]. South China Fisheries Science, 2020, 16(1): 127-136. DOI: 10.12131/20190147
    [2]HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066
    [3]YAN Yali, ZHANG Nan, GUO Huayang, GUO Liang, ZHU Kecheng, LIU Baosuo, ZHANG Dianchang. Species identification and phylogenetic relationship in Siganidae based on DNA barcoding[J]. South China Fisheries Science, 2019, 15(1): 100-105. DOI: 10.12131/20180083
    [4]MOU Weihao, ZHOU Yan, GENG Yi, WANG Kaiyu, YU Zehui, LI Yajun, HUANG Xiaoli, OU Yangping, CHEN Defang. Effect on main functional genes expression and replication of Chinese giant salamander ranavirus (CGSRV) by RNA interference[J]. South China Fisheries Science, 2017, 13(4): 80-86. DOI: 10.3969/j.issn.2095-0780.2017.04.010
    [5]HUANG Guoqiang, LI Jie, TANG Xia, ZHANG Lingyan. Changes of GH, IGF-I, RNA/DNA ratio and glycogen content of juvenile brown flounder during thermal stress and restoration[J]. South China Fisheries Science, 2012, 8(6): 16-21. DOI: 10.3969/j.issn.2095-0780.2012.06.003
    [6]RONG Chaozhen, ZU Guozhang, HU Jianhua, SUN Shouqi, SUN Tangli. Structure of mitochondrial DNA control region and genetic diversity of Misgurnus anguillicaudatus[J]. South China Fisheries Science, 2011, 7(5): 55-62. DOI: 10.3969/j.issn.2095-0780.2011.05.009
    [7]SU Tianfeng, JIANG Shigui. Structure and phylogenetic analysis of mitochondrial DNA control region of genus Trachurus[J]. South China Fisheries Science, 2011, 7(1): 18-25. DOI: 10.3969/j.issn.2095-0780.2011.01.003
    [8]QIANG Jun, WANG Hui, LI Ruiwei, PENG Jun. Effects of salinities on growth, survival and digestive enzymes activity of larval hybrid tilapia (Oreochromis niloticus×O.aureus)[J]. South China Fisheries Science, 2009, 5(5): 8-14. DOI: 10.3969/j.issn.1673-2227.2009.05.002
    [9]HAN Linqiang, LI Shengjie, YU Lingyun, BAI Junjie. The application of RNA interference in fishes[J]. South China Fisheries Science, 2009, 5(3): 67-73. DOI: 10.3969/j.issn.1673-2227.2009.03.012
    [10]FAN Wujiang, WANG Xiaoqing, YANG Pinhong, XIE Chunhua. Comparison of genomic DNA extraction of Aristichthys nobilis[J]. South China Fisheries Science, 2007, 3(1): 44-47.
  • Cited by

    Periodical cited type(8)

    1. 傅建军,安睿,朱文彬,王兰梅,罗明坤,董在杰. 套养池塘主要养殖阶段浮游生物的群落结构特征. 水产学杂志. 2024(01): 104-112 .
    2. 宋光同,王芬,徐笑娜,朱成骏,陈祝,李翔,周翔,叶圣陶,蒋业林. 中华鳖养殖过程中浮游生物群落结构的演变. 中国农学通报. 2024(08): 157-164 .
    3. 季雨来,吴召仕,张京,刘鹏,裴鹏娜,张帅,黄佳聪. 太湖流域平原农业区典型圩塘浮游植物群落特征及其影响因子. 湖泊科学. 2024(05): 1380-1392 .
    4. 闵文武,王龙燕,陈飞雄,周其椿. 集装箱养殖生态净化池塘中浮游植物群落结构多样性分析. 水产科技情报. 2024(05): 302-310 .
    5. 蒲炜佳,董世鹏,张东旭,于力业,谢宜成,徐羡,王芳,李由明. 三疣梭子蟹池塘综合养殖系统浮游植物群落结构及其与环境因子的关系. 中国水产科学. 2022(04): 549-561 .
    6. 侯德昌,张莹莹,魏文志. 不同中华鳖养殖模式浮游植物功能群特征及水环境评价. 安徽农业科学. 2022(09): 96-99+170 .
    7. 马景雪,张培玉,王宗兴,郑明刚,高萍,曲凌云,王波,郑风荣. 青岛崂山湾近海扇贝养殖区细菌多样性及环境因子分析. 海洋科学进展. 2022(02): 307-319 .
    8. 张晓蕾,王强,张国奇,周陆,李廷发,张玉,赵思雅. 池塘循环流水养殖模式中浮游植物群落结构的空间变化研究. 南方水产科学. 2021(03): 36-45 . 本站查看

    Other cited types(2)

Catalog

    Article views (4346) PDF downloads (30) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return