MA Jun, LIU Jiaxin, JIANG Zhijing, ZHOU Yongsen, YU Zhenhao, WANG Haishan, CHEN Yan, CHEN Pan, HUANG Hai. Development and identification of SSR markers based on RNA-seq data of Diodon hystrix[J]. South China Fisheries Science, 2020, 16(1): 127-136. DOI: 10.12131/20190147
Citation: MA Jun, LIU Jiaxin, JIANG Zhijing, ZHOU Yongsen, YU Zhenhao, WANG Haishan, CHEN Yan, CHEN Pan, HUANG Hai. Development and identification of SSR markers based on RNA-seq data of Diodon hystrix[J]. South China Fisheries Science, 2020, 16(1): 127-136. DOI: 10.12131/20190147

Development and identification of SSR markers based on RNA-seq data of Diodon hystrix

More Information
  • Received Date: July 25, 2019
  • Revised Date: September 26, 2019
  • Available Online: October 20, 2019
  • The transcriptome sequences of Diodon hystrix were obtained by RNA-seq technology, and a total of 221 762 Unigenes were generated by de novo assembly with N50 of 2 240 nt and GC content of 46.20%. By using MISA software, 106 221 SSR loci, which distributed in 62 451 Unigenes with a frequency of 28.16%, were detected from the RNA-seq data of D. hystrix. The dominant repeat units were mononucleotide, dinucleotide and trinucleotide, which accounted for 48.99%, 32.57% and 14.72% of the total SSR loci, respectively. The A/T was the main repeat unit in mononucleotide, accounting for 46.21% of the total SSR loci, while the AC/GT and AGG/CCT were the dominant repeat units in di- and thinucleotides, accounting for 21.90% and 2.70% of the total SSR loci, respectively. Altogether 17 563 pairs of primers were designed by selecting SSR loci with length greater than 20 bp. Then 160 pairs of primers were randomly selected for amplification and identification, and 95 pairs of effective amplification primers were screened, accounting for 59.38%. Thirty pairs of stable and repeatable polymorphic primers were obtained from the effective amplification primers by polymorphism verification (31.58% of the effective amplification primers). Among them, 15 pairs of primers showed high polymorphism (PIC>0.5), which were benefit for assessing the diversity of D. hystrix population. These results indicate that the transcriptome data of D. hystrix can be used as an effective source for the development of stable SSR markers, and the obtained polymorphic SSR loci can provide foundation for the further study of genetic map and genetic diversity of D. hystrix.
  • [1]
    LEIS J M. Systematics and zoogeography of the porcupinefishes (Diodon, Diodontidae, Tetraodontiformes), with comments on egg and larval development[J]. Fish Bull, 1978, 76(3): 535-567.
    [2]
    LEIS J M. Nomenclature and distribution of the species of the porcupinefish family Diodontidae (Pisces, Teleostei)[J]. Mem Natl Mus Victoria, 2006, 63(1): 77-90. doi: 10.24199/j.mmv.2006.63.10
    [3]
    TREVETT A J, MAVO B, WARRELL D A. Tetrodotoxic poisoning from ingestion of a porcupine fish (Diodon hystrix) in Papua New Guinea: nerve conduction studies[J]. Am J Trop Med Hyg, 1997, 56(1): 30-32. doi: 10.4269/ajtmh.1997.56.30
    [4]
    BANDYOPADHYAY S A. On the record of a spot-fin porcupine fish, Diodon hystrix (Linnaeus, 1758) from Mandarmani, Bay of Bengal Coast of West Bengal, India[J]. Proc Zool Soc, 2014, 67(2): 175-177. doi: 10.1007/s12595-013-0087-y
    [5]
    LIU J, ZAPFE G, SHAO K T, et al. Diodon hystrix (errata version published in 2016)[EB/OL]. [2019-05-06]. https://www.iucnredlist.org/species/193668/97664783.
    [6]
    DIETHARD T. Hypervariabflity of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Res, 1989, 17(16): 6463-6471. doi: 10.1093/nar/17.16.6463
    [7]
    何平. 真核生物中的微卫星及其应用[J]. 遗传, 1998, 20(4): 42-47.
    [8]
    DONG Z G, ZHANG D D, LI X Y, et al. Twenty-nine SNP markers developed from the transcriptomics of rainbow clam Moerella iridescens and their application in population genetics[J]. Conservation Genet Resour, 2018, 10(3): 277-279. doi: 10.1007/s12686-017-0801-6
    [9]
    DU M, LI N, NIU B Z, et al. De novo transcriptome analysis of Bagarius yarrelli (Siluriformes: Sisoridae) and the search for potential SSR markers using RNA-Seq[J]. PLoS One, 2018, 13(2): 1-11.
    [10]
    龚诗琦, 王志勇, 肖世俊, 等. 黄姑鱼转录组SSR的开发与验证[J]. 集美大学学报(自然科学版), 2016, 21(4): 241-246. doi: 10.3969/j.issn.1007-7405.2016.04.001
    [11]
    CHEN X, MEI J, WU J J, et al. A comprehensive transcriptome provides candidate genes for sex determination/differentiation and SSR/SNP markers in yellow catfish[J]. Mar Biotechnol, 2015, 17(2): 190-198. doi: 10.1007/s10126-014-9607-7
    [12]
    袁文成, 黄鹤忠, 李文龙, 等. 翘嘴鳜 (Siniperca chuatsi) 转录组EST-SSR位点的信息分析及其多态性检测[J]. 海洋与湖沼, 2015, 46(2): 403-409. doi: 10.11693/hyhz20140900248
    [13]
    李超, 侯吉伦, 王桂兴, 等. 基于牙鲆RNA-seq数据中SSR标记的信息分析[J]. 海洋渔业, 2015, 37(2): 122-127. doi: 10.3969/j.issn.1004-2490.2015.02.004
    [14]
    ROZEN S, SKALETSKY H. Primer3 on the WWW for general users and for biologist programmers[J]. Methods Mol Biol, 2000, 132(3): 365-386.
    [15]
    BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32(3): 314-331.
    [16]
    TEMNYKH S, DECLERCK G, LUKASHOVA A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.) : frequency, length variation, transposon associations, and genetic marker potential[J]. Genome Res, 2001, 11(8): 1441-1452. doi: 10.1101/gr.184001
    [17]
    GERSTEIN M, JANSEN R. The current excitement in bioinformatics: analysis of whole-genome expression data: how does it relate to protein structure and function?[J]. Curr Opin Struct Biol, 2000, 10(5): 574-584. doi: 10.1016/S0959-440X(00)00134-2
    [18]
    HYTEN D L, CANNON S B, SONG J Q, et al. High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence[J]. Bmc Genomics, 2010, 11(1): 38-45. doi: 10.1186/1471-2164-11-38
    [19]
    OLENA M, MARTIN H, MARCO M. Applications of new sequencing technologies for transcriptome analysis[J]. Annu Rev Genomics Hum Genet, 2009, 10(1): 135-151. doi: 10.1146/annurev-genom-082908-145957
    [20]
    李小白, 向林, 罗洁, 等. 转录组测序 (RNA-seq) 策略及其数据在分子标记开发上的应用[J]. 中国细胞生物学学报, 2013(5): 720-726. doi: 10.11844/j.issn:1674-7666.2013.05.024
    [21]
    王且鲁, 刘奕, 宋红梅, 等. 双须骨舌鱼转录组EST-SSR标记开发与引物筛选[J]. 淡水渔业, 2016, 46(6): 8-13. doi: 10.3969/j.issn.1000-6907.2016.06.002
    [22]
    管奥, 毋玉婷, 陈宇, 等. 曼氏无针乌贼转录组微卫星特征分析[J]. 渔业科学进展, 2018, 39(3): 144-151.
    [23]
    王传聪, 唐修阳, 项杰, 等. 罗氏沼虾转录组SSR标记信息分析[J]. 江苏农业科学, 2018, 46(22): 64-67.
    [24]
    崔建洲, 申雪艳, 杨官品, 等. 红鳍东方鲀基因组微卫星特征分析[J]. 中国海洋大学学报 (自然科学版), 2006, 36(2): 249-254.
    [25]
    SCHORDERET D F, GARTLER S M. Analysis of CpG suppression in methylated and nonmethylated species[J]. Proc Natl Acad Sci, 1992, 89(3): 957-961. doi: 10.1073/pnas.89.3.957
    [26]
    李偲, 刘航, 黄容, 等. 草鱼Ⅰ型微卫星标记的发掘及其多态性检测[J]. 水生生物学报, 2011, 35(4): 681-687.
    [27]
    WANG D, LIAO X, CHENG L, et al. Development of novel EST-SSR markers in common carp by data mining from public EST sequences[J]. Aquaculture, 2007, 271(1/2/3/4): 558-574.
    [28]
    HEARNE C M, Ghosh S, Todd J A. Microsatellite for linkage analysis of genetic traits[J]. Trends Genet, 1992, 8(8): 288-294. doi: 10.1016/0168-9525(92)90256-4
    [29]
    李腾云, 李思发. 尼罗罗非鱼与萨罗罗非鱼回交子代遗传变异的微卫星分析[J]. 上海海洋大学学报, 2008, 17(4): 396-401.
    [30]
    朱维岳, 周桃英, 钟明, 等. 基于遗传多样性和空间遗传结构的野生大豆居群采样策略[J]. 复旦学报(自然科学版), 2006, 45(3): 321-327. doi: 10.3969/j.issn.0427-7104.2006.03.009
    [31]
    LOUISE H, SHEENA L, KAREN L, et al. Detection of genotyping errors by Hardy-Weinberg equilibrium testing[J]. Eur J Hum Genet, 2004, 12(5): 395-399. doi: 10.1038/sj.ejhg.5201164
    [32]
    RODRIGUEZ S, GAUNT T R, DAY I N M. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies[J]. Am J Epidemiol, 2009, 169(4): 505-514. doi: 10.1093/aje/kwn359
  • Related Articles

    [1]LI Bingbu, WANG Guixing, ZHANG Xiaoyan, LIU Yufeng, HE Zhongwei, CAO Wei, REN Jiangong, REN Yuqin, ZHANG Yitong, SAN Lize, WANG Yufen, HOU Jilun. Association analysis of SNPs polymorphisms in mstn gene of Paralichthys olivaceus with growth traits[J]. South China Fisheries Science, 2024, 20(2): 119-128. DOI: 10.12131/20230165
    [2]YANG Wei, SI Yuanyuan, XU Ruiwen, CHEN Xinghan. Characterization of microsatellites and polymorphic marker development in ragworm (Tylorrhynchus heterochaetus) based on genome survey data[J]. South China Fisheries Science, 2023, 19(5): 123-133. DOI: 10.12131/20230086
    [3]HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066
    [4]ZHU Bing, FAN Jiajia, BAI Junjie, JIANG Peng. Gold grass carp microsatellite polymorphism and its comparative analysis with four grass carp populations from China[J]. South China Fisheries Science, 2017, 13(2): 51-58. DOI: 10.3969/j.issn.2095-0780.2017.02.007
    [5]WANG Chunxiao, GAO Fengying, LU Maixin, LIU Zhigang, ZHU Huaping, YE Xing. Sequence polymorphism of 5′-flanking regions of GHSR genes and genetic diversity of two populations of Nile tilapia (Oreochromis niloticus)[J]. South China Fisheries Science, 2015, 11(1): 18-25. DOI: 10.3969/j.issn.2095-0780.2015.01.003
    [6]OU Yanyan, LIU Zhigang, LIU Jinshang. Study on body-color polymorphism of Chlamys nobilis in Liusha Bay[J]. South China Fisheries Science, 2012, 8(5): 15-24. DOI: 10.3969/j.issn.2095-0780.2012.05.003
    [7]LI Jun, YU Ziniu. Single nucleotide polymorphisms and their application in genetic studies on marine organisms[J]. South China Fisheries Science, 2010, 6(3): 74-80. DOI: 10.3969/j.issn.1673-2227.2010.03.014
    [8]ZHOU Fa-lin, JIANG Shi-gui, JIANG Yong-jie, HUANG Jian-hua, MA Zhi-ming. Polymorphism of mtDNA 16S rRNA gene and control region sequence in Penaeus monodon of Sanya, Hainan[J]. South China Fisheries Science, 2006, 2(6): 13-18.
    [9]LI Lihao, YU Dahui. Methods for isolating microsatellite DNA loci from genomic DNA and the applications in aquatic animals[J]. South China Fisheries Science, 2006, 2(5): 74-80.
    [10]GONG Jinbo, SU Tianfeng, XIA Junhong, GONG Shiyuan, JIANG Shigui. Polymorphism study of the mitochondrial DNA D-loop control region sequences from black porgy Acanthopagrus schlegeli, in the costal waters of China[J]. South China Fisheries Science, 2006, 2(4): 24-30.
  • Cited by

    Periodical cited type(8)

    1. 韦小凯,周康奇,邹欣汐,林勇,叶华,罗辉,覃俊奇,陈忠,黄姻,杜雪松,张彩群,潘贤辉. 基于全长转录组数据的中国圆田螺微卫星特征分析与标记筛选. 水生态学杂志. 2025(02): 235-242 .
    2. 陈欣雨,朱守玟,江转转. 李属植物线粒体基因组特征与系统发育分析. 福建农林大学学报(自然科学版). 2024(04): 491-500 .
    3. 杨尉,司圆圆,许瑞雯,陈兴汉. 基于基因组survey数据的疣吻沙蚕微卫星特征分析及多态标记开发. 南方水产科学. 2023(05): 123-133 . 本站查看
    4. 徐慧敏,巨丹丹,龚兵,肖明松. 基于Illumina HiSeq平台的翘嘴红鲌转录组测序分析. 安徽科技学院学报. 2023(06): 49-56 .
    5. 杨尉,司圆圆,许瑞雯,陈兴汉. 疣吻沙蚕转录组SSR位点鉴定及特征分析. 南方农业学报. 2023(09): 2593-2603 .
    6. 陈丽梅,李莉,石栩蔚,秦艺铭,刘利华,郭永军. 基于转录组数据的毛蚶SSR分子标记开发与评价. 渔业科学进展. 2022(03): 129-137 .
    7. 陈华谱,黄春仁,何睿祺,戴明姝,张明真,李智渊,黄海,李广丽. 密斑刺鲀(Diodon hystrix)gnrh基因的克隆及表达分析. 海洋与湖沼. 2021(04): 994-1006 .
    8. 刘倩倩,谭宇尘,姚宝辉,康宇坤,苏军虎. 基于转录组测序的高原鼢鼠多态性微卫星标记筛选. 草业科学. 2021(12): 2481-2489 .

    Other cited types(2)

Catalog

    Article views (5750) PDF downloads (57) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return