HUANG Guoqiang, LI Jie, TANG Xia, ZHANG Lingyan. Changes of GH, IGF-I, RNA/DNA ratio and glycogen content of juvenile brown flounder during thermal stress and restoration[J]. South China Fisheries Science, 2012, 8(6): 16-21. DOI: 10.3969/j.issn.2095-0780.2012.06.003
Citation: HUANG Guoqiang, LI Jie, TANG Xia, ZHANG Lingyan. Changes of GH, IGF-I, RNA/DNA ratio and glycogen content of juvenile brown flounder during thermal stress and restoration[J]. South China Fisheries Science, 2012, 8(6): 16-21. DOI: 10.3969/j.issn.2095-0780.2012.06.003

Changes of GH, IGF-I, RNA/DNA ratio and glycogen content of juvenile brown flounder during thermal stress and restoration

More Information
  • Received Date: May 24, 2012
  • Revised Date: July 09, 2012
  • To investigate the changes of GH, IGF-I, RNA/DNA ratio and glycogen content of brown flounder (Paralichthys olivaceus) to thermal manipulation, we cultured the juveniles at 8.5 ℃(T8.5), 13.0 ℃(T13.0), 17.5 ℃(T17.5), 22.0 ℃ (T22.0) and 26.5 ℃ (T26.5) for 10 d, and then adjusted to 22.0 ℃ for 30 d. The plasma IGF-I concentration of T17.5 was lower than that of T22.0 during stress period, but no significant difference was found in plasma GH and IGF-I concentration at different temperatures during stress and restoration periods. RNA/DNA ratios were significantly different in liver during 20~40 d but not significantly different in muscle during the whole experimental period. The glycogen contents in liver of T8.5, T13.0 and T26.5 were significantly lower than that of T17.5. At the end of the experiment, the glycogen contents in liver of T8.5, T13.0, T17.5 and T26.5 were slightly higher than that of T22.0. The glycogen contents in muscle of T26.5 and T13.0 were the highest at the end of stress period and on 20th day, repectively. The slow growth caused by 10-day culture at different temperatures could be completely compensated in 30 d after the temperature was adjusted to 22.0 ℃. No significant correlation was detected among plasma GH, IGF-I concentration, RNA/DNA ratio and growth rate.

  • [1]
    MORTENSEN A, DAMSGAARD B. Compensatory growth and weight segregation following light and temperature manipulation of juvenile Atlantic salmon (Salmo salar L. ) and Arctic charr (Salvelinus alpinus L. )[J]. Aquaculture, 1993, 114(3/4): 261-272. doi: 10.1016/0044-8486(93)90301-E
    [2]
    NICIEZA A, METCALFE N B. Growth compensation in juvenile Atlantic salmon: responses to depressed temperature and food availability[J]. Ecology, 1997, 78(8): 2385-2400. doi: 10.1890/0012-9658(1997)078[2385:GCIJAS]2.0.CO;2
    [3]
    王晓杰, 张秀梅, 黄国强. 低温胁迫对许氏平鲉补偿生长的影响[J]. 中国水产科学, 2006, 13 (4): 566-572. http://www.fishscichina.com/zgsckx/article/abstract/3772?st=article_issue

    WANG Xiaojie, ZHANG Xiumei, HUANG Guoqiang. Compensatory growth of rockfish (Sebastes schlegeli) following low temperature stress[J]. J Fish Sci China, 2006, 13 (4): 566-572. (in Chinese) http://www.fishscichina.com/zgsckx/article/abstract/3772?st=article_issue
    [4]
    HUANG G, WEI L, ZHANG X, et al. Compensatory growth of juvenile brown flounder Paralichthys olivaceus following thermal manipulation[J]. J Fish Biol, 2008, 72(10): 2534-2542. doi: 10.1111/j.1095-8649.2008.01863.x
    [5]
    HORNICK J L, Van EANAEME C, GÉRARDER O, et al. Mechanisms of reduced and compensatory growth[J]. Domest Anim Endocrinol, 2000, 19(2): 121-132. doi: 10.1016/S0739-7240(00)00072-2
    [6]
    CHAUVIGNÉF, GABILLARD J C, WEIL C, et al. Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle[J]. Gen Comp Endocrinol, 2003, 132(2): 209-215. doi: 10.1016/S0016-6480(03)00081-9
    [7]
    PICHA M E, SILVERSTEIN J T, BORSKI R J. Discordant regulation of hepatic IGF-I mRNA and circulating IGF-I during compensatory growth in a teleost, the hybrid striped bass (Morone chrysops×Morone saxatilis)[J]. Gen Comp Endocrinol, 2006, 147(2): 196-205. doi: 10.1016/j.ygcen.2005.12.020
    [8]
    IMSLAND A K, FOSS A, ROTH B, et al. Plasma insulin-like growth factor-I concentrations and growth in juvenile halibut (Hippoglossus hippoglossus): effects of photoperiods and feeding regimes[J]. Comp Biochem Physiol, 2008, 151A(1): 66-70. doi: 10.1016/j.cbpa.2008.05.179
    [9]
    HAGENØ, FERNANDES J M O, SOLBERG C, et al. Expression of growth-related genes in muscle during fasting and refeeding of juvenile Atlantic halibut, Hippoglossus hippoglossus L. [J]. Comp Biochem Physiol, 2009, 152B(1): 47-53. doi: 10.1016/j.cbpb.2008.09.083
    [10]
    ENES P, SANCHEZ-GURMACHES J, NAVARRO I, et al. Role of insulin and IGF-I on the regulation of glucose metabolism in European sea bass (Dicentrarchus labrax) fed with different dietary carbohydrate levels[J]. Comp Biochem Physiol, 2010, 157(4)A: 346-353. doi: 10.1016/j.cbpa.2010.08.006
    [11]
    FOX B K, BREVES J P, DAVIS L K, et al. Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia[J]. Gen Comp Endocrinol, 2010, 166(3): 573-580. doi: 10.1016/j.ygcen.2009.11.012
    [12]
    RAHIMI R, FARHANGI M, AMIRI B M, et al. Compensatory growth assessment by plasma IGF-I hormone measurement and growth performance in rainbow trout (Oncorhynchus mykiss)[J]. Afr J Biotechnol, 2010, 9 (25): 3949-3954.
    [13]
    BUCKLY L J. Relationships between RNA/DNA ratio, prey density, and growth rate in Atlantic cod (Gadus morhus)larva[J]. J Fish Res Board Can, 1979, 36(12): 1497-1502. doi: 10.1139/f79-217
    [14]

    [15]
    STEFANSSON S O, BJONSSON B T, HANSEN T, et al. Growth, parr-smolt transformation, and changes in growth hormone of Atlantic salmon (Salmo salar) reared under different photoperiods[J]. Can J Fish Aquat Sci, 1991, 48(11): 2100-2108. doi: 10.1139/f91-249
    [16]
    YOUNG G, BJONSSON B T, PRUNET P, et al. Smoltification and seawater adaptation in coho salmon (Oncorhynchus kisutch) plasma prolactin, growth hormone, thyroid hormone and cortisol[J]. Gen Comp Endocrinol, 1989, 74(3): 346-354. doi: 10.1016/S0016-6480(89)80030-9
    [17]
    BOLTON J P, YOUNG G, NISHIOKA R. Plasma growth hormone levels in normal and stunted yearling coho salmon, Oncorhynchus kisutch [J]. J Exp Zool, 1987, 242(3): 379-382. doi: 10.1002/jez.1402420318
    [18]
    BJONSSON B T, THORARENSEN T, HIRANO T, et al. Photoperiod and temperature affect plasma growth hormone levels, growth, condition factor and hypoosmoregulatory ability of juvenile Atlantic salmon (Salmo salar) during parr smolt transformation[J]. Aquculture, 1989, 82(1/2/3/4): 77-91. doi: 10.1016/0044-8486(89)90397-9
    [19]
    MARCHANT T A, PETER R E. Seasonal variations in body growth rates and circulating levels of growth hormone in the goldfish, Carassius auratus[J]. J Exp Zool, 1986, 237(2): 231-239. doi: 10.1002/jez.1402370209
    [20]
    MCCORMICK S D, KELLEY K M, YOUNG G, et al. Stimulation of coho salmon growth by insulin-like growth factor I[J]. Gen Comp Endocrinol, 1992, 6(2): 398-406. doi: 10.1016/0016-6480(92)90064-Q
    [21]
    CHEN J Y, JIAN C C, CHI Y C, et al. Expression of recombinant tilapia insulin-like growth factor-I and stimulation of juvenile tilapia growth by injection of recombinant IGFs polypeptides[J]. Aquaculture, 2000, 18(3): 347-360. doi: 10.1016/S0044-8486(99)00239-2
    [22]
    PETERSON B C, SMALL B C. Effects of exogenous cortisol on the GH/IGF-I/IGFBP network in channel catfish[J]. Domest Anim Endocrinol, 2005, 26 (11): 391-404.
    [23]
    SKYRUD T, ANDERSEN O, ALESTROM P, et al. Effects of recombinant human growth hormone and insulin-like growth factor-I on body growth and blood metabolites in brook trout (Salvelinus fontinalis)[J]. Gen Comp Endocrinol, 1989, 12(3): 247-255. doi: 10.1016/0016-6480(89)90077-4
    [24]
    BRIAN R, BECKMANA M S, BRAD A, et al. The effect of temperature change on the relations among plasma IGF-I, 41-kDa IGFBP, and growth rate in postsmolt coho salmon[J]. Aquaculture, 2004, 22(3): 601-619. doi: 10.1016/j.aquaculture.2004.08.013
    [25]
    GABILLARD J C, WEIL C, RESCAN P Y, et al. Effects of environmental temperature on IGF1, IGF2, and IGF type I receptor expression in rainbow trout[J]. Gen Comp Endocrinol, 2003, 10(2): 233-242. doi: 10.1016/S0016-6480(03)00167-9
    [26]
    BULLOW F J. RNA-DNA ratios as indicators of recent growth rates of a fish[J]. J Fish Res Board Can, 1970, 27(12): 2343-2349. doi: 10.1139/f70-262
    [27]
    MIGLAVS I, JOBLING M. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Ssalvelinus alpus, with particular respect to compensatory growth[J]. J Fish Biol, 1989, 34(6): 947-957. doi: 10.1111/j.1095-8649.1989.tb03377.x
    [28]
    PELLETIER D, BLIER P U, LAMBERT Y. Deviation from the general relationship between RNA concentration and growth rate in fish[J]. J Fish Biol, 1995, 47(5): 920-922. doi: 10.1111/j.1095-8649.1995.tb06015.x
    [29]
    张美昭, 张兆琪, 郑春波, 等. 牙鲆幼鱼能量代谢的初步研究[J]. 中国水产科学, 1999, 6 (1): 75-78. https://cstj.cqvip.com/Qikan/Article/Detail?id=3567784&from=Qikan_Article_Detail

    ZHANG Meizhao, ZHANG Zhaoqi, ZHENG Chunbo, et al. Energy metabolism of juvenile Japanese flounder, Paralichthys olivaceus[J]. J Fish Sci China, 1999, 6 (1): 75-78. (in Chinese) https://cstj.cqvip.com/Qikan/Article/Detail?id=3567784&from=Qikan_Article_Detail
    [30]
    罗毅平, 谢小军. 鱼类利用碳水化合物的研究进展[J]. 中国水产科学, 2010, 17(2): 381-390. https://www.fishscichina.com/zgsckx/article/abstract/1021?st=article_issue

    LUO Yiping, XIE Xiaoju. Progress of carbohydrate utilization in fish[J]. J Fish Sci China, 2010, 17(2): 381-390. (in Chinese) https://www.fishscichina.com/zgsckx/article/abstract/1021?st=article_issue
  • Cited by

    Periodical cited type(8)

    1. 农源,杨洋,滕婷,陈林,孙彤彤,郑喜邦,李恭贺,杨磊,韦仁,吴文德. 罗非鱼源无乳链球菌ScpB蛋白的表达及IgM抗体间接ELISA方法的建立. 黑龙江畜牧兽医. 2024(02): 119-128 .
    2. 王瑞,莫玉萍,雷爱莹,黄婷,陈明,李莉萍. 罗非鱼无乳链球菌弱毒疫苗不同免疫途径最适宜免疫温度的研究. 黑龙江畜牧兽医. 2024(08): 104-109 .
    3. 布日额,吴金花,锡林高娃,陈金龙,王金良. 牛乳腺炎无乳链球菌PI-2a菌毛岛屿BP亚基单克隆抗体胶体金标记试纸条制备. 中国人兽共患病学报. 2020(01): 45-49 .
    4. 谢云丹,冯娟,刘婵,邓益琴,王江勇,苏友禄. 自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析. 南方水产科学. 2019(02): 47-57 . 本站查看
    5. 黎铭,马春霞,黎建斌,雷爱莹,李莉萍,李大列,陈福艳,陈明. 无乳链球菌对罗非鱼肠道菌群的影响. 南方农业学报. 2019(08): 1647-1656 .
    6. 赵欣,贾鹏,刘莹,王津津,史秀杰,潘广,郑晓聪,于力,何俊强,刘荭,吴志新. 鲤疱疹病毒2型微滴式数字PCR检测方法的建立及比较分析. 渔业科学进展. 2017(04): 126-133 .
    7. 陈甜甜,房文红,王元,李新苍,赵姝,周俊芳. 梭子蟹肌孢虫SYBR Green I实时定量PCR检测方法的建立与应用. 南方水产科学. 2017(06): 22-29 . 本站查看
    8. 陆专灵,钟一治,赵忠添,卢智发,侯树鉴,李青,李登明,张益峰,韦友传. 龟源肺炎克雷伯菌SYBR-GreenⅠ荧光定量PCR检测方法的建立. 基因组学与应用生物学. 2016(05): 1137-1142 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return