Citation: | HUANG Guoqiang, LI Jie, TANG Xia, ZHANG Lingyan. Changes of GH, IGF-I, RNA/DNA ratio and glycogen content of juvenile brown flounder during thermal stress and restoration[J]. South China Fisheries Science, 2012, 8(6): 16-21. DOI: 10.3969/j.issn.2095-0780.2012.06.003 |
To investigate the changes of GH, IGF-I, RNA/DNA ratio and glycogen content of brown flounder (Paralichthys olivaceus) to thermal manipulation, we cultured the juveniles at 8.5 ℃(T8.5), 13.0 ℃(T13.0), 17.5 ℃(T17.5), 22.0 ℃ (T22.0) and 26.5 ℃ (T26.5) for 10 d, and then adjusted to 22.0 ℃ for 30 d. The plasma IGF-I concentration of T17.5 was lower than that of T22.0 during stress period, but no significant difference was found in plasma GH and IGF-I concentration at different temperatures during stress and restoration periods. RNA/DNA ratios were significantly different in liver during 20~40 d but not significantly different in muscle during the whole experimental period. The glycogen contents in liver of T8.5, T13.0 and T26.5 were significantly lower than that of T17.5. At the end of the experiment, the glycogen contents in liver of T8.5, T13.0, T17.5 and T26.5 were slightly higher than that of T22.0. The glycogen contents in muscle of T26.5 and T13.0 were the highest at the end of stress period and on 20th day, repectively. The slow growth caused by 10-day culture at different temperatures could be completely compensated in 30 d after the temperature was adjusted to 22.0 ℃. No significant correlation was detected among plasma GH, IGF-I concentration, RNA/DNA ratio and growth rate.
[1] |
MORTENSEN A, DAMSGAARD B. Compensatory growth and weight segregation following light and temperature manipulation of juvenile Atlantic salmon (Salmo salar L. ) and Arctic charr (Salvelinus alpinus L. )[J]. Aquaculture, 1993, 114(3/4): 261-272. doi: 10.1016/0044-8486(93)90301-E
|
[2] |
NICIEZA A, METCALFE N B. Growth compensation in juvenile Atlantic salmon: responses to depressed temperature and food availability[J]. Ecology, 1997, 78(8): 2385-2400. doi: 10.1890/0012-9658(1997)078[2385:GCIJAS]2.0.CO;2
|
[3] |
王晓杰, 张秀梅, 黄国强. 低温胁迫对许氏平鲉补偿生长的影响[J]. 中国水产科学, 2006, 13 (4): 566-572. http://www.fishscichina.com/zgsckx/article/abstract/3772?st=article_issue
WANG Xiaojie, ZHANG Xiumei, HUANG Guoqiang. Compensatory growth of rockfish (Sebastes schlegeli) following low temperature stress[J]. J Fish Sci China, 2006, 13 (4): 566-572. (in Chinese) http://www.fishscichina.com/zgsckx/article/abstract/3772?st=article_issue
|
[4] |
HUANG G, WEI L, ZHANG X, et al. Compensatory growth of juvenile brown flounder Paralichthys olivaceus following thermal manipulation[J]. J Fish Biol, 2008, 72(10): 2534-2542. doi: 10.1111/j.1095-8649.2008.01863.x
|
[5] |
HORNICK J L, Van EANAEME C, GÉRARDER O, et al. Mechanisms of reduced and compensatory growth[J]. Domest Anim Endocrinol, 2000, 19(2): 121-132. doi: 10.1016/S0739-7240(00)00072-2
|
[6] |
CHAUVIGNÉF, GABILLARD J C, WEIL C, et al. Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle[J]. Gen Comp Endocrinol, 2003, 132(2): 209-215. doi: 10.1016/S0016-6480(03)00081-9
|
[7] |
PICHA M E, SILVERSTEIN J T, BORSKI R J. Discordant regulation of hepatic IGF-I mRNA and circulating IGF-I during compensatory growth in a teleost, the hybrid striped bass (Morone chrysops×Morone saxatilis)[J]. Gen Comp Endocrinol, 2006, 147(2): 196-205. doi: 10.1016/j.ygcen.2005.12.020
|
[8] |
IMSLAND A K, FOSS A, ROTH B, et al. Plasma insulin-like growth factor-I concentrations and growth in juvenile halibut (Hippoglossus hippoglossus): effects of photoperiods and feeding regimes[J]. Comp Biochem Physiol, 2008, 151A(1): 66-70. doi: 10.1016/j.cbpa.2008.05.179
|
[9] |
HAGENØ, FERNANDES J M O, SOLBERG C, et al. Expression of growth-related genes in muscle during fasting and refeeding of juvenile Atlantic halibut, Hippoglossus hippoglossus L. [J]. Comp Biochem Physiol, 2009, 152B(1): 47-53. doi: 10.1016/j.cbpb.2008.09.083
|
[10] |
ENES P, SANCHEZ-GURMACHES J, NAVARRO I, et al. Role of insulin and IGF-I on the regulation of glucose metabolism in European sea bass (Dicentrarchus labrax) fed with different dietary carbohydrate levels[J]. Comp Biochem Physiol, 2010, 157(4)A: 346-353. doi: 10.1016/j.cbpa.2010.08.006
|
[11] |
FOX B K, BREVES J P, DAVIS L K, et al. Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia[J]. Gen Comp Endocrinol, 2010, 166(3): 573-580. doi: 10.1016/j.ygcen.2009.11.012
|
[12] |
RAHIMI R, FARHANGI M, AMIRI B M, et al. Compensatory growth assessment by plasma IGF-I hormone measurement and growth performance in rainbow trout (Oncorhynchus mykiss)[J]. Afr J Biotechnol, 2010, 9 (25): 3949-3954.
|
[13] |
BUCKLY L J. Relationships between RNA/DNA ratio, prey density, and growth rate in Atlantic cod (Gadus morhus)larva[J]. J Fish Res Board Can, 1979, 36(12): 1497-1502. doi: 10.1139/f79-217
|
[14] |
林浩然. 鱼类生理学[M]. 广州: 广东高等教育出版社, 1999: 210-212. https://www.researchgate.net/publication/233933672_Compensatory_growth_assessment_by_plasma_IGF-I_hormone_measurement_and_growth_performance_in_rainbow_trout_Oncorhynchus_mykiss
LIN Haoran. Physiology of fish[M]. Guangzhou: Guangdong Higher Education Press, 1999: 210-212. (in Chinese) https://www.researchgate.net/publication/233933672_Compensatory_growth_assessment_by_plasma_IGF-I_hormone_measurement_and_growth_performance_in_rainbow_trout_Oncorhynchus_mykiss
|
[15] |
STEFANSSON S O, BJONSSON B T, HANSEN T, et al. Growth, parr-smolt transformation, and changes in growth hormone of Atlantic salmon (Salmo salar) reared under different photoperiods[J]. Can J Fish Aquat Sci, 1991, 48(11): 2100-2108. doi: 10.1139/f91-249
|
[16] |
YOUNG G, BJONSSON B T, PRUNET P, et al. Smoltification and seawater adaptation in coho salmon (Oncorhynchus kisutch) plasma prolactin, growth hormone, thyroid hormone and cortisol[J]. Gen Comp Endocrinol, 1989, 74(3): 346-354. doi: 10.1016/S0016-6480(89)80030-9
|
[17] |
BOLTON J P, YOUNG G, NISHIOKA R. Plasma growth hormone levels in normal and stunted yearling coho salmon, Oncorhynchus kisutch [J]. J Exp Zool, 1987, 242(3): 379-382. doi: 10.1002/jez.1402420318
|
[18] |
BJONSSON B T, THORARENSEN T, HIRANO T, et al. Photoperiod and temperature affect plasma growth hormone levels, growth, condition factor and hypoosmoregulatory ability of juvenile Atlantic salmon (Salmo salar) during parr smolt transformation[J]. Aquculture, 1989, 82(1/2/3/4): 77-91. doi: 10.1016/0044-8486(89)90397-9
|
[19] |
MARCHANT T A, PETER R E. Seasonal variations in body growth rates and circulating levels of growth hormone in the goldfish, Carassius auratus[J]. J Exp Zool, 1986, 237(2): 231-239. doi: 10.1002/jez.1402370209
|
[20] |
MCCORMICK S D, KELLEY K M, YOUNG G, et al. Stimulation of coho salmon growth by insulin-like growth factor I[J]. Gen Comp Endocrinol, 1992, 6(2): 398-406. doi: 10.1016/0016-6480(92)90064-Q
|
[21] |
CHEN J Y, JIAN C C, CHI Y C, et al. Expression of recombinant tilapia insulin-like growth factor-I and stimulation of juvenile tilapia growth by injection of recombinant IGFs polypeptides[J]. Aquaculture, 2000, 18(3): 347-360. doi: 10.1016/S0044-8486(99)00239-2
|
[22] |
PETERSON B C, SMALL B C. Effects of exogenous cortisol on the GH/IGF-I/IGFBP network in channel catfish[J]. Domest Anim Endocrinol, 2005, 26 (11): 391-404.
|
[23] |
SKYRUD T, ANDERSEN O, ALESTROM P, et al. Effects of recombinant human growth hormone and insulin-like growth factor-I on body growth and blood metabolites in brook trout (Salvelinus fontinalis)[J]. Gen Comp Endocrinol, 1989, 12(3): 247-255. doi: 10.1016/0016-6480(89)90077-4
|
[24] |
BRIAN R, BECKMANA M S, BRAD A, et al. The effect of temperature change on the relations among plasma IGF-I, 41-kDa IGFBP, and growth rate in postsmolt coho salmon[J]. Aquaculture, 2004, 22(3): 601-619. doi: 10.1016/j.aquaculture.2004.08.013
|
[25] |
GABILLARD J C, WEIL C, RESCAN P Y, et al. Effects of environmental temperature on IGF1, IGF2, and IGF type I receptor expression in rainbow trout[J]. Gen Comp Endocrinol, 2003, 10(2): 233-242. doi: 10.1016/S0016-6480(03)00167-9
|
[26] |
BULLOW F J. RNA-DNA ratios as indicators of recent growth rates of a fish[J]. J Fish Res Board Can, 1970, 27(12): 2343-2349. doi: 10.1139/f70-262
|
[27] |
MIGLAVS I, JOBLING M. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Ssalvelinus alpus, with particular respect to compensatory growth[J]. J Fish Biol, 1989, 34(6): 947-957. doi: 10.1111/j.1095-8649.1989.tb03377.x
|
[28] |
PELLETIER D, BLIER P U, LAMBERT Y. Deviation from the general relationship between RNA concentration and growth rate in fish[J]. J Fish Biol, 1995, 47(5): 920-922. doi: 10.1111/j.1095-8649.1995.tb06015.x
|
[29] |
张美昭, 张兆琪, 郑春波, 等. 牙鲆幼鱼能量代谢的初步研究[J]. 中国水产科学, 1999, 6 (1): 75-78. https://cstj.cqvip.com/Qikan/Article/Detail?id=3567784&from=Qikan_Article_Detail
ZHANG Meizhao, ZHANG Zhaoqi, ZHENG Chunbo, et al. Energy metabolism of juvenile Japanese flounder, Paralichthys olivaceus[J]. J Fish Sci China, 1999, 6 (1): 75-78. (in Chinese) https://cstj.cqvip.com/Qikan/Article/Detail?id=3567784&from=Qikan_Article_Detail
|
[30] |
罗毅平, 谢小军. 鱼类利用碳水化合物的研究进展[J]. 中国水产科学, 2010, 17(2): 381-390. https://www.fishscichina.com/zgsckx/article/abstract/1021?st=article_issue
LUO Yiping, XIE Xiaoju. Progress of carbohydrate utilization in fish[J]. J Fish Sci China, 2010, 17(2): 381-390. (in Chinese) https://www.fishscichina.com/zgsckx/article/abstract/1021?st=article_issue
|
[1] | LU Hongyi, TIAN Haifeng, HU Qiaomu, LI Zhong. Parentage assignment of Monopterus albus using multiplex PCR of microsatallites[J]. South China Fisheries Science, 2023, 19(6): 97-106. DOI: 10.12131/20230081 |
[2] | LI Min, LI Yongfu, HUANG Yuhao, CHEN Zhuojun, MO Zuanlan, ZHONG Qunfang, LI Benwang, ZHANG Xianpeng. Establishment of reverse transcription droplet digital PCR assay for detection of Tilapia Lake Virus[J]. South China Fisheries Science, 2023, 19(1): 75-85. DOI: 10.12131/20220184 |
[3] | SHEN Fei, ZHAI Yufei, WANG Hao, LYU Liqun. Antimicrobial spectrum, resistance gene detection and ERIC-PCR genotyping of Vibrio scophthalmi[J]. South China Fisheries Science, 2022, 18(1): 118-127. DOI: 10.12131/20210138 |
[4] | MENG Delong, SHEN Benlong, BAI Wanqiang, XUE Baobao, SHEN Heding. Cloning and tissue expression of heat shock transcription factor 1 (HSF1) gene of Sinonovacula constricta[J]. South China Fisheries Science, 2020, 16(5): 115-122. DOI: 10.12131/20190164 |
[5] | FU Mingjun, ZHAO Chao, ZHOU Falin, QIU Lihua, JIANG Shigui. Molecular cloning and expression analysis of Ubiquitin-conjugating enzyme gene from black tiger shrimp (Penaeus monodon)[J]. South China Fisheries Science, 2015, 11(6): 41-48. DOI: 10.3969/j.issn.2095-0780.2015.06.006 |
[6] | WANG Rui, LI Liping, HUANG Ting, LIANG Wanwen, LIANG Cong, LEI Aiying, CHEN Ming. Real-time quantitative PCR for detection of Streptococcus agalactiae from tilapia tissue[J]. South China Fisheries Science, 2015, 11(3): 41-46. DOI: 10.3969/j.issn.2095-0780.2015.03.007 |
[7] | LONG Minming, HUANG Guiju, ZOU Jixing, GUO Yihui, FAN Sigang, LIU Baosuo, YU Dahui. Effect of pearl culture on N19 and Prismalin-14 genes expression in the pearl oyster Pinctada fucata[J]. South China Fisheries Science, 2013, 9(5): 58-63. DOI: 10.3969/j.issn.2095-0780.2013.05.010 |
[8] | LAO Haihua, YE Xing, ZOU Weimin, BAI Junjie, TAN Aiping. Detection of infectious spleen and kidney necrosis virus (ISKNV) of mandarin fish (Siniperca chuatsi) by nested PCR[J]. South China Fisheries Science, 2009, 5(4): 69-72. DOI: 10.3969/j.issn.1673-2227.2009.04.013 |
[9] | JIANG Jufeng, ZHANG Dianchang, SU Tianfeng, XIONG Xiaofei, JIANG Shigui. Recombinant expression and antibody preparation of mud carp growth hormone[J]. South China Fisheries Science, 2008, 4(1): 36-40. |
[10] | MU Xidong, BAI Junjie, YE Xing, WANG Xuejie, HU Yinchang. Effects of exogenous estradiol-17β on pituitary-thyroid axis of Carassius auratus[J]. South China Fisheries Science, 2007, 3(1): 31-36. |
1. |
周志希,唐汇娟,柯志新,刘甲星,周伟华. 基于形态学和高通量测序的春季南澳海域浮游植物群落特征及其与环境因子关系. 热带海洋学报. 2025(01): 53-65 .
![]() | |
2. |
柳原,柯志新,李开枝,谭烨辉,梁竣策,周伟华. 人类活动和沿岸流影响下的粤东近海浮游动物群落特征. 热带海洋学报. 2024(04): 98-111 .
![]() | |
3. |
薛宇,于浩林,周广军,赵伟,唐衍力. 渤海小竹山岛海洋牧场区营养盐分布特征及增养殖适宜性探究. 渔业科学进展. 2023(01): 1-12 .
![]() | |
4. |
黎素菊,洪捷娴,陈树鹏. 柘林湾养殖区氮、磷季节分布特征及富营养化评价. 江西水产科技. 2022(04): 45-47+51 .
![]() | |
5. |
匡翠萍,王丹,赵钒,刘会欣,朱磊. 金梦海湾及其邻近海域水环境因子时空分布特征. 同济大学学报(自然科学版). 2021(06): 880-890 .
![]() | |
6. |
任玉正,柯志新,谭烨辉,李开枝. 广东省南澳岛东部海域浮游动物群落结构及其影响因素. 热带海洋学报. 2020(02): 65-76 .
![]() | |
7. |
杨文超,黄道建,陈继鑫,陈晓燕,王宇珊. 大亚湾海域2009—2015年氮、磷营养盐时空分布及富营养化评价. 南方水产科学. 2020(02): 54-61 .
![]() | |
8. |
陈丹婷,柯志新,谭烨辉,刘甲星. 汕头南澳—东山海域营养盐季节分布特征及其对浮游植物生长的潜在性限制. 生态科学. 2020(04): 41-50 .
![]() | |
9. |
马欢,秦传新,陈丕茂,林会洁,段丁毓. 柘林湾海洋牧场生态系统服务价值评估. 南方水产科学. 2019(01): 10-19 .
![]() | |
10. |
王言丰,胡启伟,余景,陈丕茂,舒黎明. 粤东柘林湾海洋牧场渔业资源增殖效果评估. 南方水产科学. 2019(02): 12-19 .
![]() | |
11. |
徐淑敏,齐占会,史荣君,刘永,韩婷婷,黄洪辉. 水产养殖对亚热带海湾氮磷营养盐时空分布的影响——以深澳湾为例. 南方水产科学. 2019(04): 29-38 .
![]() | |
12. |
王文杰,陈丕茂,袁华荣,冯雪,张露,龙鑫玲,陈文静,李丹丹. 粤东柘林湾甲壳类群落结构季节变化分析. 南方水产科学. 2018(03): 29-39 .
![]() | |
13. |
佟飞,秦传新,余景,陈丕茂. 粤东柘林湾溜牛人工鱼礁建设选址生态基础评价. 南方水产科学. 2016(06): 25-32 .
![]() | |
14. |
舒黎明,陈丕茂,秦传新,黎小国,周艳波,冯雪,于杰,袁华荣,李国迎. 柘林湾-南澳岛潮间带冬夏两季大型底栖动物种类组成及优势种. 生态学杂志. 2016(02): 423-430 .
![]() | |
15. |
舒黎明,陈丕茂,黎小国,秦传新,于杰,周艳波,袁华荣. 柘林湾附近海域大型底栖动物物种多样性. 中国水产科学. 2015(03): 501-516 .
![]() |