YANG Faming, LIN Haisheng, QIN Xiaoming, ZHANG Chaohua, CAO Wenhong, GAO Jialong. Effect of enzymatic hydrolysis from mantle of pearl oyster on skin wound healing[J]. South China Fisheries Science, 2019, 15(5): 92-98. DOI: 10.12131/20190079
Citation: YANG Faming, LIN Haisheng, QIN Xiaoming, ZHANG Chaohua, CAO Wenhong, GAO Jialong. Effect of enzymatic hydrolysis from mantle of pearl oyster on skin wound healing[J]. South China Fisheries Science, 2019, 15(5): 92-98. DOI: 10.12131/20190079

Effect of enzymatic hydrolysis from mantle of pearl oyster on skin wound healing

More Information
  • Received Date: April 04, 2019
  • Revised Date: June 09, 2019
  • Accepted Date: July 21, 2019
  • Available Online: July 23, 2019
  • In order to promote the high value utilization of pearl oyster (Pinctada martensii), we were determined explore the antibacterial activity and procoagulant activity of enzymatic hydrolysis from its mantle (EHM), and the effects of EHM on open wound healing of skin of mice. Results showed that EHM possessed of procoagulant activity in mice but had no antibacterial activity against 13 tested strains. Compared with the negative control group, the healing rate of wound of mice increased significantly after skin application with EHM for 6 d (P<0.05), but there was no significant difference with comparison with the positive control group (P>0.05). The healing rate was 100% on 14th day for the drug group, and the scar contraction rate was significantly higher than that of the negative control group (P<0.05). Biochemical indicators test indicated that EHM had significant inhibitation effect on inflammatory factor IL-6 (P<0.05); compared with the negative control group, it could promote IL-10 secretion in wound tissues significantly (P<0.05), but there was no significant difference in FGF-2 content in skin tissue of the drug groups (P>0.05), and EGF content in the positive control group was significantly higher than that in the other groups (P<0.05). Howerer, there was no significant difference in the contents of FGF-2 and EGF between the drug groups (P<0.05). In summary, EHM has procoagulant, anti-inflammatory and promotional effects, which can accelerate the open wound healing of soft tissue in mice and has a certain inhibitory effect on superficial scar hyperplasia.

  • [1]
    GOTTRUP F. Trends in surgical wound healing[J]. Scand J Surg, 2008, 97(3): 220-225. doi: 10.1177/145749690809700302
    [2]
    HASSAN W U, GREISER U, WAN W. Role of adipose-derived stem cells in wound healing[J]. Wound Repair Regen, 2014, 22(3): 313-325. doi: 10.1111/wrr.12173
    [3]
    AHMED T A, SUSO H P, MAQBOOL A A. Processed eggshell membrane powder: bioinspiration for an innovative wound healing product[J]. Mat Sci Eng C, 2019, 95(1): 192-203.
    [4]
    JEE C H, EOM N Y, JANG H M, et al. Effect of autologous platelet-rich plasma application on cutaneous wound healing in dogs[J]. J Vet Sci, 2016, 17(1): 79-87. doi: 10.4142/jvs.2016.17.1.79
    [5]
    SEN C K, GORDILLO G M, ROY S, et al. Human skin wounds: a major and snowballing threat to public health and the economy[J]. Wound Repair Regen, 2009, 17(6): 763-771. doi: 10.1111/wrr.2009.17.issue-6
    [6]
    LAROUCHE J, SHEORAN S, MARUYAMA K, et al. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets[J]. Adv Wound Care, 2018, 7(7): 209-231. doi: 10.1089/wound.2017.0761
    [7]
    LI X J, WANG Y, ZOU Z R, et al. OM-LV20, a novel peptide from odorous frog skin, accelerates wound healing in vitro and in vivo[J]. Chem Biol Drug Design, 2018, 91(1): 126-136. doi: 10.1111/cbdd.2018.91.issue-1
    [8]
    NAGAI K. A history of the cultured pearl industry[J]. Zool Sci, 2013; 30(10): 783-793.
    [9]
    SOUTHGATE P C, LUCAS J S. The pearl oyster[M]. Oxford: Elsevier, 2008: 544.
    [10]
    苗东亮, 纪丽丽, 李世杰, 等. 马氏珠母贝贝肉与贝壳成分研究[J]. 湖北农业科学, 2011, 50(7): 1439-1443.
    [11]
    张博, 孟子豪, 刘宝锁, 等. 插核手术损伤对合浦珠母贝抗氧化免疫水平的影响[J]. 南方水产科学, 2017, 13(5): 72-77. doi: 10.3969/j.issn.2095-0780.2017.05.010
    [12]
    张雪莹. 珍珠贝外套膜胶原蛋白肽的抗氧化作用及其对MCT3T-E1成骨细胞的保护作用研究[D]. 海口: 海南大学, 2015: 21.
    [13]
    左光扬, 章超桦, 高加龙, 等. 企鹅珍珠贝肉酶解产物的制备及其醒酒作用的初步研究[J]. 食品工业科技, 2012, 33(15): 145-148, 152.
    [14]
    汪志华, 王毅梅, 蔡广霞, 等. 大米肽含量的快速测定方法[J]. 食品科学, 2011, 32(12): 169-173.
    [15]
    LIN H S, ISHIZAKI S, NAGASHIMA Y, et al. Exploration of the antibacterial proteins in pearl oyster Pinctada fucata induced by bacterial inoculation[J]. Fish Sci, 2017, 83(3): 489-498. doi: 10.1007/s12562-017-1084-2
    [16]
    程沁园. 壳聚糖止血活性及其生物安全性评价研究[D]. 无锡: 江南大学, 2013: 11.
    [17]
    赵秉江. 黄芪多糖促进皮肤伤口愈合的作用及其相关机制的研究[D]. 兰州: 兰州大学, 2017: 16.
    [18]
    郭华阳. 合浦珠母贝遗传选育及两种免疫基因研究[D]. 上海: 上海海洋大学, 2011: 66-93.
    [19]
    于文媛. 马氏珠母贝抗菌肽的初步分离及抗菌活性分析[D]. 海口: 海南大学, 2011: 24-34.
    [20]
    朱家萍, 雷倩楠, 梁海鹰. 马氏珠母贝血清抗菌肽的初步分析[J]. 生命科学研究, 2015, 19(5): 397-401, 421.
    [21]
    王利. 白鹤藤止血活性及化学成分的研究[D]. 广州: 广东药科大学, 2017: 1-30.
    [22]
    王秀琴, 伍素华, 苏踊跃, 等. 部分中草药促凝作用筛选的实验研究[J]. 第三军医大学学报, 2004, 26(23): 2149-2151. doi: 10.3321/j.issn:1000-5404.2004.23.021
    [23]
    陈菊. 藕节功能性成分的提取分离及产品开发[D]. 无锡: 江南大学, 2009: 12-26.
    [24]
    唐德胜, 张秋娟. 云南白药的神奇功效[J]. 中国伤残医学, 2013, 21(1): 108. doi: 10.3969/j.issn.1673-6567.2013.01.099
    [25]
    张宇. 鸭胚蛋酶解物促进创伤愈合性能研究[D]. 武汉: 华中农业大学, 2013: 17-56.
    [26]
    李林, 李迪, 徐腾, 等. 海参胶原低聚肽对糖尿病小鼠术后伤口愈合的促进作用[J]. 中国食物与营养, 2017, 23(7): 71-75. doi: 10.3969/j.issn.1006-9577.2017.07.017
    [27]
    HU Z, YANG P, ZHOU C X, et al. Marine Collagen peptides from the skin of Nile tilapia (Oreochromis niloticus): characterization and wound healing evaluation[J]. Mar Drug, 2017, 15(4): 1-11.
    [28]
    ZIELINS E R, ATASHROO D A, MAAN Z N, et al. Wound healing: an update[J]. Regen Med, 2014, 9(6): 817-830. doi: 10.2217/rme.14.54
    [29]
    MINUTTI C M, KNIPPER J A, ALLEN J E, et al. Tissue-specific contribution of macrophages to wound healing[J]. Semin Cell Dev Biol, 2017, 61: 3-11. doi: 10.1016/j.semcdb.2016.08.006
    [30]
    RODRIGUES M, GURTNER G C. Black, white and gray: macrophages in skin repair and disease[J]. Curr Pathobiol Rep, 2017, 5(4): 333-342. doi: 10.1007/s40139-017-0152-8
    [31]
    MATEJUK A. Skin immunity[J]. Archivum Immunologiae et Therapiae Experimentalis, 2018, 66(1): 45-54. doi: 10.1007/s00005-017-0477-3
    [32]
    黄凤婷, 万绵洁, 张丹雁. 砂仁叶油的化学成分分析及促进创面愈合作用研究[J]. 广东药科大学学报, 2017, 33(4): 466-470.
    [33]
    黄涛. 蜂蜜及蜂蜜中酚酸成份对创伤大鼠皮肤修复作用的研究[D]. 荆州: 长江大学, 2016: 5-54.
    [34]
    刘怀金. 姜黄素对运动性伤口愈合的作用机制[J]. 体育科技文献通报, 2012, 20(1): 22-23, 56. doi: 10.3969/j.issn.1005-0256.2012.01.011
    [35]
    PATEL S, SRIVASTAVA S, SINGH M R, et al. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing[J]. Biomed Pharmacother, 2019, 112: 108615. doi: 10.1016/j.biopha.2019.108615
    [36]
    GURTNER G C, WERNER S, BARRANDON Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321. doi: 10.1038/nature07039
    [37]
    QIN Q J, NIU J Y, WANG Z X, et al. Astragalus membranaceus inhibits inflammation via phospho-P38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB pathways in advanced glycation end product-stimulated macrophages[J]. Int J Mol Sci, 2012, 13(7): 8379-8387. doi: 10.3390/ijms13078379
    [38]
    SONG Y L, WU C Y, ZHANG X H, et al. A short peptide potenti ally promotes the healing of skin wound[J]. Biosci Rep, 2019, 39(3): 1-19.
    [39]
    DEMIDOVA-RICE T N, HAMBLIN M R, HERMAN I M. Acute and impaired wound healing: pathophysiology and current methods for drug delivery. Part II: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery[J]. Adv Skin Wound Care, 2012, 25(8): 349-370. doi: 10.1097/01.ASW.0000418541.31366.a3
    [40]
    MUTHUKUMAR T, ANBARASU K, PRAKASH D, et al. Effect of growth factors and pro-inflammatory cytokines by the collagen biocomposite dressing material containing Macrotyloma uniflorum plant extract-In vivo wound healing[J]. Colloid Surface B, 2014, 121(1): 178-188.
    [41]
    LI L K, HAI J, LI Z Q, et al. Resveratrol modulates autophagy and NF-κB activity in a murine model for treating non-alcoholic fatty liver disease[J]. Food Chem Toxicol, 2014, 63: 166-173. doi: 10.1016/j.fct.2013.08.036
    [42]
    HE X J, NIU X Y, LI J, et al. Immunomodulatory activities of five clinically used Chinese herbal polysaccharides[J]. J Exp Integr Med, 2012, 2(1): 15-27. doi: 10.5455/jeim.
  • Related Articles

    [1]BAO Zhiming, ZOU Yongfeng, CAO Panhui, ZHANG Jiayuan, XU Yu, XU Zhiqiang, GUO Hui. Effect of high temperature stress on intestinal tissues morphology and transcriptome of Procambarus clarkii[J]. South China Fisheries Science, 2025, 21(1): 105-117. DOI: 10.12131/20240161
    [2]QIAO Di, LEI Ning, ZHU Junjie, ZHANG Chaonan, WANG Yanchao, ZHOU Ling. Transcriptome analysis of liver anti-MSRV responses in juvenile largemouth bass (Micropterus salmoides)[J]. South China Fisheries Science, 2024, 20(4): 164-176. DOI: 10.12131/20240050
    [3]HAO Tian, TANG Xianhu, JIANG Shouwen, WU Zhichao, XU Qianghua. Transcriptome comparative analysis of liver tissues of three plateau Schizothoracinae fish species[J]. South China Fisheries Science, 2024, 20(3): 92-100. DOI: 10.12131/20230204
    [4]SONG Ruhao, HU Ruiqin, LI Genfang, ZHANG Zhicong, XU Qianghua. Research on effect of hypoxia stress on liver tissue of zebrafish (Danio rerio) based on transcriptomics technology[J]. South China Fisheries Science, 2022, 18(6): 60-68. DOI: 10.12131/20220038
    [5]GAO Jin, WANG Yongbo, LIU Jinye, GUO Yilan, FU Shuyuan. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity[J]. South China Fisheries Science, 2022, 18(1): 107-117. DOI: 10.12131/20210125
    [6]SHEN Ye, WANG Xingqiang, CAO Mei, ZHENG Nianhao, CHEN Baiyao, QIN Chuanxin. Transcriptome analysis of Exopalaemon carinicauda under low salinity stress[J]. South China Fisheries Science, 2020, 16(5): 19-32. DOI: 10.12131/20190267
    [7]HUO Huanhuan, LIU Yu, ZHOU Qiubai, GUO Feng, WEI Lili, PENG Mo, ZHANG Yanping, CHEN Wenjing. Primary study on differentially expressed genes screening of Monopterus albus and their regulation mechanism[J]. South China Fisheries Science, 2020, 16(1): 1-8. DOI: 10.12131/20190176
    [8]HUANG Yong, GONG Wangbao, CHEN Haigang, XIONG Jianli, SUN Xihong. Sequencing and bioinformatic analysis for transcriptome of Micropterus salmoides based on RNA-seq[J]. South China Fisheries Science, 2019, 15(1): 106-112. DOI: 10.12131/20180066
    [9]BEI Lei, SU Youlu, ZHAO Chao, XU Liwen, LIU Guangfeng, WANG Yu, GUO Zhixun, FENG Juan. Cloning rbsB gene from Vibrio harveyi and its expression[J]. South China Fisheries Science, 2018, 14(2): 75-82. DOI: 10.3969/j.issn.2095-0780.2018.02.010
    [10]YU Wenbo, ZHU Kecheng, GUO Huayang, ZHANG Nan, SUN Xiaoxiao, WU Na, ZHANG Dianchang. Cloning and expression analysis of MHCβ gene in Trachinotus ovatus[J]. South China Fisheries Science, 2017, 13(4): 69-79. DOI: 10.3969/j.issn.2095-0780.2017.04.009
  • Cited by

    Periodical cited type(14)

    1. 唐峰华,巴尧骥,肖戈,石永闯,赵国庆,郭爱,张衡,崔雪森,陈峰. 西北印度洋公海鸢乌贼的繁殖生物学及其与环境要素的关系. 上海海洋大学学报. 2025(02): 350-364 .
    2. 赵艺翔,朱凯,王孟佳,王嘉浩,陈峰,朱文斌. 西北印度洋雌性鸢乌贼繁殖生物学特性研究. 海洋渔业. 2025(02): 273-282 .
    3. 温利红,张衡,方舟,陈新军. 鸢乌贼渔业资源研究进展. 水产科学. 2023(03): 527-537 .
    4. 郭有俊,张丽姿,刘毅,曾笑薇,招春旭,李渊,颜云榕. 基于内壳生长纹的秋季东印度洋鸢乌贼生长特性. 水产学报. 2022(11): 2076-2083 .
    5. 颜云榕,邱星宇,张丽姿,钟亚娜,周倍合,招春旭,李忠炉. 南沙海域鸢乌贼繁殖生物学特性. 广东海洋大学学报. 2021(03): 20-27 .
    6. 陆化杰,宁欣,刘维,张羽翔,陈子越,陈新军. 不同气候条件下南海西沙海域鸢乌贼(Sthenoteuthis oualaniensis)渔业生物学比较研究. 海洋与湖沼. 2021(04): 1029-1038 .
    7. 朱凯,张立川,肖楚源,陈新军,林东明,朱俊磊. 南海鸢乌贼微型群雌性个体繁殖力研究. 渔业科学进展. 2020(06): 140-148 .
    8. 郭有俊,吴文秀,凌炜琪,招春旭,冯波,颜云榕. 海南东南部海域春季鸢乌贼CPUE与海洋环境关系. 广东海洋大学学报. 2020(06): 63-70 .
    9. 黄佳兴,龚玉艳,徐姗楠,陈作志,张俊,于文明. 南海中西部海域鸢乌贼中型群和微型群的营养生态位. 应用生态学报. 2019(08): 2822-2828 .
    10. 江淼,马胜伟,吴洽儿. 鸢乌贼资源综合利用技术研究现状. 食品工业科技. 2018(06): 340-344 .
    11. 江淼,马胜伟,吴洽儿. 南海鸢乌贼资源探捕与开发. 中国渔业经济. 2018(02): 65-70 .
    12. 粟丽,陈作志,张鹏,李杰,王欢欢,黄佳兴. 2017年南海中南部渔场灯光罩网渔获物组成及渔获率时空分布. 南方水产科学. 2018(05): 11-20 . 本站查看
    13. 冯菲. 大数据技术在南海鸢乌贼资源调查上的研究进展. 安徽农业科学. 2018(33): 12-13+18 .
    14. 黄卉,杨丽芝,杨贤庆,李来好,郝淑贤,魏涯,王锦旭. 南海鸢乌贼墨汁多糖分离纯化及组分分析. 食品科学. 2017(24): 118-123 .

    Other cited types(18)

Catalog

    Recommendations
    Embryonic and larval development of sea urchin (temnopleurus reevesii)
    YU Weihuan et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Analysis of changes in intestinal structure and microbial composition inelentheronema tetradactylumjuvenile at different days of age
    FENG Yuantai et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Food habits study ofmystus guttatusjuvenile based on water body analysis and dna macro barcode technology for stomach contents
    MENG Qingmi et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Differential expression of the rimoc1 gene in male and female chinese tongue sole (cynoglossus semilaevis)
    SUN Yuxuan et al., PROGRESS IN FISHERY SCIENCES, 2024
    Gender differences in dictamnin-induced liver injury in mice based on transcriptome and dna methylation
    YU Zihui et al., DEPARTMENT OF JOURNAL OF PLA MEDICAL COLLEGE, 2024
    The complete sequence and comparative analysis of ape sex chromosomes
    Makova, Kateryna D., NATURE, 2024
    Classification of feline hypertrophic cardiomyopathy-associated gene variants according to the american college of medical genetics and genomics guidelines
    Boeykens, Frederique et al., FRONTIERS IN VETERINARY SCIENCE, 2024
    A study of enhanced visual perception of marine biology images based on diffusion-gan
    COMPLEX & INTELLIGENT SYSTEMS
    Dft study on mechanism and regioselectivity in pd(ii)-catalyzed dehydrogenative heck olefination of selenophenes
    CHEMISTRYSELECT, 2025
    Powered by
    Article views (4957) PDF downloads (45) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return