JIANG Peiwen, LI Min, ZHANG Shuai, CHEN Zuozhi, XU Shannan. Construction of DNA meta-barcode database of fish in Pearl River Estuary based on mitochondrial cytochrome COI and 12S rDNA gene[J]. South China Fisheries Science, 2022, 18(3): 13-21. DOI: 10.12131/20210210
Citation: JIANG Peiwen, LI Min, ZHANG Shuai, CHEN Zuozhi, XU Shannan. Construction of DNA meta-barcode database of fish in Pearl River Estuary based on mitochondrial cytochrome COI and 12S rDNA gene[J]. South China Fisheries Science, 2022, 18(3): 13-21. DOI: 10.12131/20210210

Construction of DNA meta-barcode database of fish in Pearl River Estuary based on mitochondrial cytochrome COI and 12S rDNA gene

More Information
  • Received Date: July 27, 2021
  • Revised Date: August 15, 2021
  • Accepted Date: September 02, 2021
  • Available Online: October 16, 2021
  • In order to establish a DNA barcode background database of fish in the Pearl River Estuary and provide information basis for fish species identification and diversity research, we had collected 251 samples from the Pearl River Estuary from 2020 to 2021, and determined 652 bp fragments of mitochondrial cytochrome oxidase subunit I (COI) of 219 individuals and 163−185 bp fragments of mitochondrial 12s rDNA of 247 individuals of 99 species, 10 families, 41 genera, 6 orders. Besides, we downloaded 165 COI sequences and 128 12S rDNA sequences from GenBank database, and had obtained 384 COI sequences and 375 12S rDNA sequences of 172 species of fish. The results show that the average intraspecific genetic distance of COI sequence was 0.20%, and the average interspecific genetic distance was 25.54%. The average intraspecific genetic distance of 12S rDNA sequence was 0.12%, and the average interspecific genetic distance was 34.39%. The DNA barcode of COI gene could form an obvious barcode gap, but the DNA barcode based on 12s rDNA gene could not, and it was difficult to distinguish the 11 species (6.4% of the total species). The establishment of the DNA barcode database of fish in the Pearl River Estuary is conductive to the environmental DNA analysis of the fish ecosystem in that area, providing reliable technical support for the protection of fish biodiversity and the monitoring of population dynamics in the Pearl River Estuary.
  • [1]
    林坤, 麦广铭, 王力飞, 等. 2015—2018年珠江口近岸海域鱼类群落结构及其稳定性[J]. 水产学报, 2020, 44(11): 1841-1850.
    [2]
    袁梦, 汤勇, 徐姗楠, 等. 珠江河口南沙海域秋季渔业资源群落结构特征[J]. 南方水产科学, 2017, 13(2): 18-25. doi: 10.3969/j.issn.2095-0780.2017.02.003
    [3]
    赵蒙蒙, 寇杰锋, 杨静, 等. 粤港澳大湾区海岸带生态安全问题与保护建议[J]. 环境保护, 2019, 47(23): 29-34.
    [4]
    汪曦. 河南省鱼类DNA条形码数据库构建及隐存种挖掘[D]. 新乡: 河南师范大学, 2019: 2-10.
    [5]
    HEBERT P D, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J]. Proc R Soc B, 2003, 270(1512): 313-321. doi: 10.1098/rspb.2002.2218
    [6]
    WARD R D, ZEMLAK T S, INNES B H, et al. DNA barcoding Australia's fish species[J]. Philos Trans R Soc Lond B, 2005, 360(1462): 1847-1857. doi: 10.1098/rstb.2005.1716
    [7]
    WANG S, YAN Z, HÄNFLING B, et al. Methodology of fish eDNA and its applications in ecology and environment[J]. Sci Total Environ, 2021, 755(2): 142622.
    [8]
    ZOU K S, CHEN J W, RUAN H T, et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling[J]. Sci Total Environ, 2020, 702: 134704. doi: 10.1016/j.scitotenv.2019.134704
    [9]
    TURON M, ANGULO-PRECKLER C, ANTICH A, et al. More than expected from old sponge samples: a natural sampler DNA metabarcoding assessment of marine fish diversity in Nha Trang Bay (Vietnam)[J]. Front Mar Sci, 2020, 7(12): 1-14.
    [10]
    陈炼, 吴琳, 刘燕, 等. 环境DNA metabarcoding及其在生态学研究中的应用[J]. 生态学报, 2016, 36(15): 4573-4582.
    [11]
    MIYA M, SATO Y, FUKUNAGA T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. R Soc Open Sci, 2015, 2(7): 150088. doi: 10.1098/rsos.150088
    [12]
    GOLD Z, SPRAGUE J, KUSHNER D J, et al. eDNA metabarcoding as a biomonitoring tool for marine protected areas[J]. Published Online, 2021, 16(2): 1-19.
    [13]
    HIDEYUKI D, RYUTEI I, SHUNSUKE M, et al. Estimation of biodiversity metrics by environmental DNA metabarcoding compared with visual and capture surveys of river fish communities[J]. Freshw Biol, 2021, 66: 1257-1266. doi: 10.1111/fwb.13714
    [14]
    DÍAZ J, VANINA V, FELIPE D P, et al. First DNA barcode reference library for the identification of South American freshwater fish from the lower Paraná River[J]. PLOS ONE, 2016, 11(7): 1-21.
    [15]
    WANG Y H, DUAN J N, SHI H L, et al. Species identification of small fish in Xixuan Island coastal waters of Zhoushan using DNA barcoding[J]. J Appl Ichthyol, 2020, 36(1): 75-84. doi: 10.1111/jai.13995
    [16]
    成庆泰, 郑葆珊. 中国鱼类系统检索[M]. 北京: 科学出版社, 1990: 55-536.
    [17]
    肖瑜璋, 王蓉, 郑琰晶, 等. 珠江口鱼类浮游生物种类组成与数量分布[J]. 热带海洋学报, 2013, 32(6): 80-87. doi: 10.3969/j.issn.1009-5470.2013.06.012
    [18]
    李永振, 陈国宝, 孙典荣. 珠江口鱼类组成分析[J]. 水产学报, 2000, 24(4): 312-317.
    [19]
    詹海刚. 珠江口及邻近水域鱼类群落结构研究[J]. 海洋学报(中文版), 1998(3): 91-97.
    [20]
    王迪, 林昭进. 珠江口鱼类群落结构的时空变化[J]. 南方水产, 2006, 2(4): 37-45.
    [21]
    黄吉万, 孙典荣, 刘岩, 等. 珠江口中华白海豚自然保护区鱼类群落多样性分析[J]. 南方农业学报, 2018, 49(5): 1000-1007. doi: 10.3969/j.issn.2095-1191.2018.05.25
    [22]
    SWINDELL S R, PLASTERER T N. SEQMAN Contig assembly[J]. Methods Mol Biol, 1997, 70: 75-89.
    [23]
    KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35: 1547-1549. doi: 10.1093/molbev/msy096
    [24]
    ROBINSON E A, GERGIN B, HEBERT P, et al. Prospects for using DNA barcoding to identify spiders in species-rich genera[J]. Zookeys, 2009, 46: 27-46.
    [25]
    PUILLANDRE N, LAMBERT A, BROUILLET S, et al. ABGD, automatic barcode gap discovery for primary species delimitation[J]. Mol Ecol, 2012, 21: 1864-1877. doi: 10.1111/j.1365-294X.2011.05239.x
    [26]
    ZHANG D F, GAO I, ZOU J, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Mol Ecol Resour, 2020, 20(1): 348-355. doi: 10.1111/1755-0998.13096
    [27]
    IVICA L, PEER B. Interactive Tree Of Life (iTOL) v4: recent updates and new developments[J]. Nucleic Acids Res, 2019, 47(1): 256-259.
    [28]
    ANDRIYONO S, ALAM M J, KIM H W. The Jawa and Bali Island marine fish molecular identification to improve 12S rRNA-tRNA Valin-16S rRNA partial region sequences on the GenBank database[J]. Thalassas, 2020, 36(2): 343-356. doi: 10.1007/s41208-020-00196-x
    [29]
    李因强. 珠江口水域鱼类群落结构研究[D]. 湛江: 广东海洋大学, 2008: 2-10.
    [30]
    袁健美, 张虎, 胡海生, 等. 南黄海两个水产种质资源保护区底拖网大型底栖动物群落组成及多样性[J]. 生态学杂志, 2021, 40(7): 2186-2193.
    [31]
    罗纯, 章群, 黄志基, 等. 中日沿海部分鱼类DNA条形码研究[J]. 海洋渔业, 2021, 43(1): 1-11. doi: 10.3969/j.issn.1004-2490.2021.01.001
    [32]
    郜星晨, 姜伟. 三峡库区常见鱼类DNA条形码本地BLAST数据库的构建和应用[J]. 基因组学与应用生物学, 2020, 39(11): 1-21.
    [33]
    PUEBLA O. Ecological speciation in marine v. freshwater fishes[J]. J Fish Biol, 2009, 75(5): 960-996. doi: 10.1111/j.1095-8649.2009.02358.x
    [34]
    PAVAN-KUMAR A, GIREESH-BABU P, SURESH BABU P P, et al. Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers[J]. Mol Biol Rep, 2014, 41: 447-457. doi: 10.1007/s11033-013-2879-6
    [35]
    杨倩倩, 刘苏汶, 俞晓平. DNA条形码分析方法研究进展[J]. 应用生态学报, 2018, 29(3): 1006-1014.
  • Related Articles

    [1]JIANG Kui, HU Xiaojuan, XU Chuangwen, HONG Minna, LIU Xiyao, MAI Xiaoyong, CHEN Haiyi, YANG Keng. Effects of schizophyllan on growth, immunity and intestinal microflora of Litopenaeus vannamei[J]. South China Fisheries Science, 2023, 19(5): 95-103. DOI: 10.12131/20230041
    [2]ZHANG Jiachen, LIU Jianyong, YUAN Ruipeng, HU Zhiguo. Effect of stocking density on growth and survival of inbred and hybrid offspring of Litopenaeus vannamei[J]. South China Fisheries Science, 2015, 11(4): 53-58. DOI: 10.3969/j.issn.2095-0780.2015.04.008
    [3]LI Guolie, WANG Yuan, FANG Wenhong, SHEN Jinyu, ZHOU Junfang. Pharmacokinetics and bioavailability of sarafloxacin hydrochloride in Litopenaeus vannamei[J]. South China Fisheries Science, 2014, 10(1): 50-56. DOI: 10.3969/j.issn.2095-0780.2014.01.008
    [4]ZHANG Huajun, LI Zhuojia, ZHANG Jiasong, ZHANG Xiaoyang, CAO Yucheng, WEN Guoliang, CHENG Kaimin. Effects of stocking density on immune parameters and growth of juvenile Litopenaeus vannamei[J]. South China Fisheries Science, 2012, 8(4): 43-48. DOI: 10.3969/j.issn.2095-0780.2012.04.007
    [5]QIU Zefeng, ZHANG Liang, ZENG Weicai, JIAN Zhuoying, GAO Jialong, LIU Shucheng. Effect of frozen storage on muscle texture of Litopenaeus vannamei[J]. South China Fisheries Science, 2011, 7(5): 63-67. DOI: 10.3969/j.issn.2095-0780.2011.05.010
    [6]TONG Xin, GONG Shiyuan, YU Dahui, DU Bo, HUANG Guiju, LI Lihao, GUO Yihui, LI Sedong. Variation of growth traits at different generations of Pacific white shrimp (Litopenaeus vannamei)[J]. South China Fisheries Science, 2007, 3(6): 30-33.
    [7]LI Chunhou, QIN Honggui, JIA Xiaoping, TIAN Lixia. The effect of density on energy conversion efficiency of juvenile shrimp Litopenaeus vannamei[J]. South China Fisheries Science, 2006, 2(1): 30-33.
    [8]LIN Heizhe, YE Le, CHEN Yanjun, ZHOU Jinghui, LI Zhuojia, WU Kaichang. Effect of feed additive Stafac-500 on the growth and feed conversion for juvenile white shrimp, Litopenaeus vannamei[J]. South China Fisheries Science, 2005, 1(6): 63-65.
    [9]YE Le, LIN Hei-zhe, LI Zhuo-jia, WU Kai-chang, WEN Guo-liang, MA Zhi-ming, ZHU Chang-fu. The effect of feeding frequency on growth of Litopenaeus vannamei (Boone) and water quality[J]. South China Fisheries Science, 2005, 1(4): 55-59.
    [10]LI Zhuo-jia, LIN Liang, YANG Ying-ying, LIN Xiao-tao. Effect of Bacillus commercial probiotic on intestinal microflora of white shrimp, Litopenaeus vannamei[J]. South China Fisheries Science, 2005, 1(3): 54-59.
  • Other Related Supplements

Catalog

    Recommendations
    Comparative study on growth, hepatopancreas and gill histological structure, and enzyme activities oflitopenaeus vannameiunder so42−/cl−stress in low saline water
    HE Zheng et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Comparison of fish species detection effect of three sets of commonly used edna metabarcoding primers on sanya water samples
    GUO Yaojie et al., SOUTH CHINA FISHERIES SCIENCE, 2025
    Characterization of proteinase-producing strainbacillus tropicalisbtzb2 from source of fish in reef of south china sea
    HU Xiaojuan et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Distribution characteristics and ecological risk assessment of heavy metals in sediments in adjacent waters of wailingding marine ranching
    FENG Xue et al., SOUTH CHINA FISHERIES SCIENCE, 2024
    Effects of duckweed and floc multitrophic level integrated culture on penaeus vannamei
    HONG Boyang et al., FISHERY MODERNIZATION, 2025
    Gene structure and expression analysis of insulin-like peptide in the pacific white shrimp litopenaeus vannamei
    SU Manwen et al., PROGRESS IN FISHERY SCIENCES, 2024
    Exploring the impact of contaminants of emerging concern on fish and invertebrates physiology in the mediterranean sea
    Impellitteri, Federica et al., BIOLOGY-BASEL, 2023
    A review on the involvement of heat shock proteins (extrinsic chaperones) in response to stress conditions in aquatic organisms
    Jeyachandran, Sivakamavalli et al., ANTIOXIDANTS, 2023
    Nacl as an excellent trigger-induced biodiesel production and phenol-containing wastewater treatment in a novel salt-tolerant microalgae ankistrodesmus sp. acc
    BIORESOURCE TECHNOLOGY
    Biochar-enhanced removal of naphthenic acids from oil sands process water: influence of feedstock and chemical activation
    ENERGY & ENVIRONMENTAL SUSTAINABILITY, 2025
    Powered by
    Article views (2046) PDF downloads (262) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return