Citation: | LU Zhen-bin. The production of fishery resources and the maximum sustained yield in the Min-zhong fishery in Taiwan Strait[J]. South China Fisheries Science, 2006, 2(2): 6-14. |
In this paper, according to the theory of marine ecosystem trophic dynamic, based on the primary productivity data of the Min-zhong Taiwan Strait collected from the marine science surveys in the Taiwan Strait, by investigation of the species composition and structure of fishery resource, the content of organic carbon in phytoplankton, ecological efficiency, the trophic levels of the 61 main species, and measuring the content of organic carbon of the 58 main species. The trophic dynamic model and Cushing′ model are used to estimate the productivity of fishery resources, the trophic dynamic model and surplus yield model are used to estimate the maximum sustained yield of fishery resources. The result shows that the potential productivity of fishery resources is calculated using trophic dynamic model and Cusing model to be 38.59×104 and 43.68×104 t, respectively. The maximum sustained yield (MSY) of fishery resources is calculated using Cadima model, Schaefer and Fox model to be 25.32×104, 23.96×104 and 25.28×104 t, respectively. The maximum sustained effort is calculated using Schaefer and Fox model to be 3 372 and 3 983 of standard trawl boats in Fujian. The annual catches have been among 27.00×104~40.01×104 t since 1994, and the devoted fishing efforts are 3 897~5 976 of standard trawl boats in Fujian, which have exceeded the maximum sustained yield and the maximum sustained efforts for 11 years. The fishes′ structure of the main population is simplification, miniaturization and younger. The ecological parameters of utmost length (L∞) and utmost weight (W∞) are smaller, the growth curvature (K) is increasing, the inflexion of weight (tr) is ahead the schedule, the length of the first maturity is shorter, the fishing mortality coefficient and the ratio of exploitation are increasing, so the fishery resources decline rapidly. We must intensify the management of the fish resources, and take powerful measures to control the fishing effort and catches.
[1] |
PARSONS TR, TAKAHASHII M. Biological oceanographic processes[M]. New York: Pergamon Press, 1973: 186.
|
[2] |
CUSHING D H. Upwelling and the production of fish Adv[J]. Mar Biol, 1973, 9: 255-334. doi: 10.1016/s0065-2881(08)60344-2
|
[3] |
詹秉义. 渔业资源评估[M]. 北京: 中国农业出版社, 1993: 257-270.
|
[4] |
福建省浅海滩涂资源综合调查领导小组办公室. 福建省浅海滩涂资源综合调查报告[M]. 北京: 海洋出版社, 1990: 152-156.
|
[5] |
洪华生, 阮五崎, 黄邦钦, 等. 台湾海峡初级生产力及其调控机制研究[M]//中国海洋科学文集(7). 北京: 海洋出版社, 1997: 1-15.
|
[6] |
HUNG Tsuchang. Primary production in the Kuroshio current surrounding Taiwan[J]. J Oceanog Soc Jap, 1975, 31: 255-258. doi: 10.1007/BF02107440
|
[7] |
CHEN Y L, LUHB, SHIAH F K, et al. New production and f-ratio on the continental shelf of the East China Sea: comparisons between nitrate inputs from the subsurface Kuroshio current and the Changjiang River[J]Est Coastal&Shelf Sci, 1999, 48(1): 59-75. doi: 10.1006/ecss.1999.0404
|
[8] |
CHEN-LEE Yuhling. Comparisons of primary productivity and phytoptankton size structure in the marginal regions of southern East China Sea[J]. Cont Shelf Res, 2000, 20: 437-458. doi: 10.1016/S0278-4343(99)00080-1
|
[9] |
福建海洋研究所. 台湾海峡中、北部海洋综合调查研究报告[R]. 北京: 科学出版社, 1988: 259-304. https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=BD9BCCD766E354E90BC27FBEB82AB5778000
|
[10] |
IKEDA T, MOTODA S. Estimated zooplankton production andtheir ammonia in the Kuroshio and adjaceut seas[J]. Fish Bull, 1978, 76: 357-367.
|
[11] |
OMORI M. Weight and chemical composition of some important oceanic zooplankton in the North Pecific Ocean[J]. Mar Biol1969, 3: 3-10.
|
[12] |
GIGUERE L A. Can we estimate the true weight of zooplankton samples after chemical preservation?[J]. Can J Fish Aquat Sci, 1989, 46: 522-527. doi: 10.1139/f89-070
|
[13] |
IKEDA T. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature and temperature[J]. Mar Biol, 1985, 85: 1-11. doi: 10.1007/BF00396409
|
[14] |
张其永, 林秋眠, 林尤通, 等. 闽南-台湾浅滩渔场鱼类食物网研究[J]. 海洋学报, 1981, 3(2): 276-290. https://www.cnki.com.cn/Article/CJFDTotal-SEAC198102007.htm
|
[15] |
王军, 苏永全. 福建罗源湾鱼类食物网研究[J]. 中国水产月刊(台), 1996(518): 55-65.
|
[16] |
张雅芝, 李福振, 林向阳, 等. 东山湾鱼类食物网研究[J]. 台湾海峡, 1994, 13(1): 52-57. https://lib.cqvip.com/Qikan/Article/Detail?id=1494314&from=Qikan_Article_Detail
|
[17] |
卢振彬, 戴泉水, 颜尤明. 福建近海20种鱼类生态学的研究[J]. 福建水产, 1999(2): 20-27. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg5RSzE5OTkwMDA5OTExORoIcHo3YzU0bmo%3D
|
[18] |
卢振彬, 戴泉水, 朱进福, 等. 福建近海渔业资源结构及其主要种群生态学的变化[J]. 福建水产, 1999(3): 1-7.
|
[19] |
卢振彬, 戴泉水, 颜尤明. 福建近海主要底层经济鱼类的种群动态[J]. 台湾海峡, 1999, 18(1): 100-105. doi: 10.3969/j.issn.1000-8160.1999.01.018
|
[20] |
杨纪明. 海洋渔业资源开发潜力估计[M]//我国海洋开发战略研究论文集. 北京: 海洋出版社, 1995.
|
[21] |
宁修仁, 刘子琳, 史军贤. 渤、黄、东海初级生产力和潜在渔业生产量的评估[J]. 海洋学报, 1995, 17(3): 72-84. https://d.wanfangdata.com.cn/periodical/Ch9QZXJpb2RpY2FsQ0hJTmV3UzIwMjQxMTA1MTcxMzA0Eg5RSzE5OTUwMDQzMTAzMRoIN2F2Z2Rsemg%3D
|
[22] |
丘书院. 论东海渔业资源的评估[J]. 海洋渔业, 1997, 19(2): 49-51.
|
[23] |
洪华生, 丘书院, 阮五崎, 等. 闽南-台湾浅滩渔场上升流区生态系研究[M]. 北京: 科学出版社, 1991: 1-17. https://d.wanfangdata.com.cn/cstad/Ch9Dc3RhZE5ld1MyMDI0MDMwNjIwMjQxMTA1MTUzODM1EgY5MDA5NzkaCHpiNXo5ZTl1
|
[24] |
张波, 唐启升. 渤、黄、东海高营养层次重要生物资源种类的营养级研究[J]. 海洋科学进展, 2004, 22(4): 393-404. doi: 10.3969/j.issn.1671-6647.2004.04.001
|
[25] |
卢振彬, 戴泉水, 肖方森. 闽南-台湾浅滩海域鱼类资源容纳量[J]. 热带海洋学报, 2005, 24(1): 60-66.
|
[26] |
林法玲. 闽东渔场鱼类资源生态容量和最大可持续开发量[J]. 海洋渔业, 2004, 26(2): 86-92. doi: 10.3969/j.issn.1004-2490.2004.02.003
|